【題目】如圖,在正方形ABCD中,對角線AC、BD相交于點O,E、F分別在OD、OC上的動點,且DE=CF,連接DF、AE,AE的延長線交DF于點M,連接OM.
(1)求證:△ADE≌△DCF;
(2)求證:AM⊥DF;
(3)當CD=AF時,試判斷△MOF的形狀,并說明理由.
【答案】(1)證明見解析;(2)證明見解析.(3)△MOF是等腰三角形,理由見解析.
【解析】
(1)根據DE=CF和正方形的性質,證明△AED≌△DFC;
(2)由△AED≌△DFC得出∠EAD=∠FDC,然后利用等角代換可得出∠AMD=90°,得出了結論.
(2)利用等腰三角形三線合一得:DM=FM,再由直角三角形斜邊中線可得結論.
(1)證明:∵四邊形ABCD是正方形,
∴AD=DC,∠ADE=∠DCF=45°
在△AED和△DFC中,
,
∴△AED≌△DFC(SAS);
(2)由①中△AED≌△DFC,
∴∠EAD=∠FDC,
∵∠ADM+∠FDC=90°,
∴∠ADM+∠EAD=90°,
∴∠AMD=90°,
∴AM⊥DF;
(3)△MOF是等腰三角形,
理由是:∵AD=CD,CD=AF
∴AD=AF
∵AM⊥DF,
∴DM=FM,
∵∠DOF=90°,
∴OM=DF=FM,
∴△MOF是等腰三角形.
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知點M,N的坐標分別為(﹣1,2),(2,1),若拋物線y=ax2﹣x+2(a≠0)與線段MN有兩個不同的交點,則a的取值范圍是( 。
A. a≤﹣1或≤a< B. ≤a<
C. a≤或a> D. a≤﹣1或a≥
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩名同學在一次用頻率去估計概率的實驗中,繪出了某一結果出現的頻率的折線圖,則符合這一結果的實驗可能是
A. 擲一枚正六面體的骰子,出現1點的概率
B. 拋一枚硬幣,出現正面的概率
C. 任意寫一個整數,它能被2整除的概率
D. 從一個裝有2個白球和1個紅球的袋子中任取一球,取到紅球的概率
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,O為原點,點A(﹣,0),點B(0,1)把△ABO繞點O順時針旋轉,得△A'B'O,點A,B旋轉后的對應點為A',B',記旋轉角為α(0°<α<360°).
(1)如圖①,當點A′,B,B′共線時,求AA′的長.
(2)如圖②,當α=90°,求直線AB與A′B′的交點C的坐標;
(3)當點A′在直線AB上時,求BB′與OA′的交點D的坐標(直接寫出結果即可)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,對角線AC、BD相交于點O,且OA=OB.
(1)求證:四邊形ABCD是矩形;
(2)若AB=2,∠AOB=60°,求BC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(8分)如圖,已知O是坐標原點,B、C兩點的坐標分別為(3,-1)、(2,1)。
(1)以O點為位似中心在y軸的左側將△OBC放大到兩倍畫出圖形。
(2)寫出B、C兩點的對應點B、C的坐標;
(3)如果△OBC內部一點M的坐標為(x,y),寫出M的對應點M的坐標。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我市某儲運部緊急調撥一批物資,調進物資共用4小時,調進物資2小時后開始調出物資(調進物資與調出物資的速度均保持不變).儲運部庫存物資(噸)與時間(小時)之間的函數關系如圖所示,這批物資從開始調進到全部調出需要的時間是( )
A. 4小時B. 4.3小時C. 4.4小時D. 5小時
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線與軸交于點,交軸于點,直線過點與軸交于點,與拋物線的另一個交點為,作軸于點.設點是直線上方的拋物線上一動點(不與點、重合),過點作軸的平行線,交直線于點,作于點.
(1)填空:__________,__________,__________;
(2)探究:是否存在這樣的點,使四邊形是平行四邊形?若存在,請求出點的坐標;若不存在,請說明理由;
(3)設的周長為,點的橫坐標為,求與的函數關系式,并求出的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=8,BC=6,點E,F,G,H分別在矩形ABCD各邊上,且AE=CG,BF=DH,則四邊形EFGH周長的最小值為( 。
A. 10B. 4C. 20D. 8
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com