如圖,已知拋物線y=
1
2
x2+mx+n(n≠0)與直線y=x交于A、B兩點(diǎn),與y軸交于精英家教網(wǎng)點(diǎn)C,OA=OB,BC∥x軸.
(1)求拋物線的解析式;
(2)設(shè)D、E是線段AB上異于A、B的兩個(gè)動(dòng)點(diǎn)(點(diǎn)E在點(diǎn)D的上方),DE=
2
,過D、E兩點(diǎn)分別作y軸的平行線,交拋物線于F、G,若設(shè)D點(diǎn)的橫坐標(biāo)為x,四邊形DEGF的面積為y,求x與y之間的關(guān)系式,寫出自變量x的取值范圍,并回答x為何值時(shí),y有最大值.
分析:(1)根據(jù)函數(shù)圖象上點(diǎn)的坐標(biāo)特點(diǎn)和函數(shù)圖象交點(diǎn)與函數(shù)解析式組成的方程組的解之間的關(guān)系,求出B點(diǎn)坐標(biāo),再根據(jù)正比例函數(shù)圖象上點(diǎn)的中心對(duì)稱性,求出A點(diǎn)坐標(biāo),用待定系數(shù)法求解即可.
(2)根據(jù)各點(diǎn)坐標(biāo)求出表示線段長(zhǎng)的解析式,因?yàn)镈F∥EG,可將四邊形DEGF作為梯形來對(duì)待求其面積.
解答:精英家教網(wǎng)解:(1)∵拋物線y=
1
2
x2+mx+n與y軸交于點(diǎn)C
∴C(0,n)
∵BC∥x軸
∴B點(diǎn)的縱坐標(biāo)為n
∵B、A在y=x上,且OA=OB
∴A(-n,-n),B(n,n)
1
2
n2+mn+n=n
1
2
n2-mn+n=-n

解得:n=0(舍去),n=-2;m=1
∴所求解析式為:y=
1
2
x2+x-2

(2)作DH⊥EG于H
∵D、E在直線y=x上
∴∠EDH=45°
∴DH=EH
∵DE=
2

∴DH=EH=1
∵D(x,x)
∴E(1+x,1+x)
∴F的縱坐標(biāo):
1
2
x2+x-2,
G的縱坐標(biāo):
1
2
(x+1)2+(x+1)-2
∴DF=x-(
1
2
x2+x-2)=2-
1
2
x2,EG=(x+1)-[
1
2
(x+1)2+(x+1)-2]=2-
1
2
(x+1)2
∴y=
1
2
[2-
1
2
x2+2-
1
2
(x+1)2]×1
y=-
1
2
x2-
1
2
x+
7
4
,
y=-
1
2
(x+
1
2
2+
15
8

∴x的取值范圍是-2<x<1.當(dāng)x=-
1
2
時(shí),y最大值=
15
8
點(diǎn)評(píng):此題是一道典型的數(shù)形結(jié)合性題目,通過坐標(biāo)和函數(shù)解析式把面積問題轉(zhuǎn)化為二次函數(shù)的最值問題是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線與x軸交于A(-1,0)、B(4,0)兩點(diǎn),與y軸交于點(diǎn)精英家教網(wǎng)C(0,3).
(1)求拋物線的解析式;
(2)求直線BC的函數(shù)解析式;
(3)在拋物線上,是否存在一點(diǎn)P,使△PAB的面積等于△ABC的面積,若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由.
(4)點(diǎn)Q是直線BC上的一個(gè)動(dòng)點(diǎn),若△QOB為等腰三角形,請(qǐng)寫出此時(shí)點(diǎn)Q的坐標(biāo).(可直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為x=1,且拋物線經(jīng)過A(-1,0)精英家教網(wǎng)、C(0,-3)兩點(diǎn),與x軸交于另一點(diǎn)B.
(1)求這條拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)在拋物線的對(duì)稱軸x=1上求一點(diǎn)M,使點(diǎn)M到點(diǎn)A的距離與到點(diǎn)C的距離之和最小,并求出此時(shí)點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•衡陽)如圖,已知拋物線經(jīng)過A(1,0),B(0,3)兩點(diǎn),對(duì)稱軸是x=-1.
(1)求拋物線對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度在線段OA上運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)M從O點(diǎn)出發(fā)以每秒3個(gè)單位長(zhǎng)度的速度在線段OB上運(yùn)動(dòng),過點(diǎn)Q作x軸的垂線交線段AB于點(diǎn)N,交拋物線于點(diǎn)P,設(shè)運(yùn)動(dòng)的時(shí)間為t秒.
①當(dāng)t為何值時(shí),四邊形OMPQ為矩形;
②△AON能否為等腰三角形?若能,求出t的值;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=1,且拋物線經(jīng)過A(-1,0)、C(0,-3)兩點(diǎn),與x軸交于另一點(diǎn)B.
(1)求這條拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)點(diǎn)P是拋物線對(duì)稱軸上一點(diǎn),若△PAB∽△OBC,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c的頂點(diǎn)是(-1,-4),且與x軸交于A、B(1,0)兩點(diǎn),交y軸于點(diǎn)C;
(1)求此拋物線的解析式;
(2)①當(dāng)x的取值范圍滿足條件
-2<x<0
-2<x<0
時(shí),y<-3;
     ②若D(m,y1),E(2,y2)是拋物線上兩點(diǎn),且y1>y2,求實(shí)數(shù)m的取值范圍;
(3)直線x=t平行于y軸,分別交線段AC于點(diǎn)M、交拋物線于點(diǎn)N,求線段MN的長(zhǎng)度的最大值;
(4)若以拋物線上的點(diǎn)P為圓心作圓與x軸相切時(shí),正好也與y軸相切,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案