【題目】為了打造鐵力旅游景點(diǎn),市旅游局打算將依吉密河中一段長(zhǎng)1800米的河道整治任務(wù)交由甲、乙兩個(gè)工程隊(duì)來(lái)完成.已知,甲工程隊(duì)每天整治60米,乙工程隊(duì)每天整治40米.
(1)若甲、乙兩個(gè)工程隊(duì)接龍來(lái)完成,共用時(shí)35天,求甲、乙兩個(gè)工程隊(duì)分別整治多長(zhǎng)的河道?
(2)若乙工程隊(duì)先整治河道10天,甲工程隊(duì)再參加兩個(gè)工程隊(duì)一起來(lái)完成剩余河道整治任務(wù),求整段河道整治任務(wù)共用時(shí)多少天?
【答案】(1)甲工程隊(duì)整治河道1200米,乙工程隊(duì)整治河道600米(2)整段河道整治任務(wù)共用時(shí)24天
【解析】
(1)設(shè)甲工程隊(duì)整治河道x米,則乙工程隊(duì)整治河道(1800-x)米,然后由已知表示出甲、乙兩工程隊(duì)的天數(shù),根據(jù)共用時(shí)35天列方程求解;
(2)設(shè)整段河道整治任務(wù)共用時(shí)a天,則甲工程隊(duì)整治用時(shí)(a-10)天,根據(jù)完成任務(wù)為1800米列出方程解答即可.
(1)設(shè)甲工程隊(duì)整治河道x米,則乙工程隊(duì)整治河道(1800﹣x)米,根據(jù)題意得:
=35,
解得:x=1200.
1800﹣x=600.
答:甲工程隊(duì)整治河道1200米,乙工程隊(duì)整治河道600米.
(2)設(shè)整段河道整治任務(wù)共用時(shí)a天,則甲工程隊(duì)整治用時(shí)(a﹣10)天,由題意得
60(a﹣10)+40a=1800
解得:a=24
答:整段河道整治任務(wù)共用時(shí)24天.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.
(1)求證:四邊形ABCD是矩形.
(2)若∠ADF:∠FDC=3:2,DF⊥AC,則∠BDF的度數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在三角形紙片ABC中,∠A=90°,∠C=30°,AC=10cm,將該紙片沿過(guò)點(diǎn)B的直線折疊,使點(diǎn)A落在斜邊BC上的一點(diǎn)E處,折痕記為BD(如圖1),剪去△CDE后得到雙層△BDE(如圖2),再沿著過(guò)△BDE某頂點(diǎn)的直線將雙層三角形剪開(kāi),使得展開(kāi)后的平面圖形中有一個(gè)是平行四邊形,則所得平行四邊形的周長(zhǎng)為_____cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】美麗的黃河宛如一條玉帶穿城而過(guò),沿河兩岸的濱河路風(fēng)情線是蘭州最美的景觀之一.?dāng)?shù)學(xué)課外實(shí)踐活動(dòng)中,小林在南濱河路上的A,B兩點(diǎn)處,利用測(cè)角儀分別對(duì)北岸的一觀景亭D進(jìn)行了測(cè)量.如圖,測(cè)得∠DAC=45°,∠DBC=65°.若AB=132米,求觀景亭D到南濱河路AC的距離(結(jié)果精確到1米,參考數(shù)據(jù):sin65°≈0.91,cos65°≈0.42,tan65°≈2.14).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=ax+1與x軸、y軸分別相交于A、B兩點(diǎn),與雙曲線y=(x>0)相交于點(diǎn)P,PC⊥x軸于點(diǎn)C,且PC=2,點(diǎn)A的坐標(biāo)為(﹣2,0).
(1)求雙曲線的解析式;
(2)若點(diǎn)Q為雙曲線上點(diǎn)P右側(cè)的一點(diǎn),且QH⊥x軸于H,當(dāng)以點(diǎn)Q、C、H為頂點(diǎn)的三角形與△AOB相似時(shí),求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=1,對(duì)角線AC、BD相交于點(diǎn)O,過(guò)點(diǎn)O作EF⊥AC分別交射線AD與射線CB于點(diǎn)E和點(diǎn)F,聯(lián)結(jié)CE、AF.
(1)求證:四邊形AFCE是菱形;
(2)當(dāng)點(diǎn)E、F分別在邊AD和BC上時(shí),如果設(shè)AD=x,菱形AFCE的面積是y,求y關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出x的取值范圍;
(3)如果△ODE是等腰三角形,求AD的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,2分別是某款籃球架的實(shí)物圖與示意圖,已知底座BC=0.60米,底座BC與支架AC所成的角∠ACB=75°,支架AF的長(zhǎng)為2.50米,籃板頂端F點(diǎn)到籃框D的距離FD=1.35米,籃板底部支架HE與支架AF所成的角∠FHE=60°,求籃框D到地面的距離(精確到0.01米)(參考數(shù)據(jù):cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,≈1.414)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在銳角△ABC中,∠ABC=45°,高線AD、BE相交于點(diǎn)F.
(1)判斷BF與AC的數(shù)量關(guān)系并說(shuō)明理由;
(2)如圖2,將△ACD沿線段AD對(duì)折,點(diǎn)C落在BD上的點(diǎn)M,AM與BE相交于點(diǎn)N,當(dāng)DE∥AM時(shí),判斷NE與AC的數(shù)量關(guān)系并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)元朝朱世杰所著的《算學(xué)啟蒙》(1299年)一書(shū)中有一道題目是:“今有良馬日行二百四十里,駑馬日行一百五十里.駑馬先行一十二日,問(wèn)良馬幾何日追及之.”譯文是:快馬每天走240里,慢馬每天走150里.慢馬先走12天,快馬幾天可以追上慢馬?
(1)設(shè)快馬x天可以追上慢馬,請(qǐng)你將如下的線段圖補(bǔ)充完整:
(2)根據(jù)(1)中線段圖所反映的數(shù)量關(guān)系,列方程解決問(wèn)題.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com