【題目】如圖(1), 已知△ABC中, ∠BAC=900, AB=AC, AE是過A的一條直線, 且B、C在A、E的異側(cè), BD⊥AE于D, CE⊥AE于E
(1)試說明: BD=DE+CE.
(2)若直線AE繞A點旋轉(zhuǎn)到圖(2)位置時(BD<CE), 其余條件不變, 問BD與DE、CE的關(guān)系如何? 為什么?
(3)若直線AE繞A點旋轉(zhuǎn)到圖(3)位置時(BD>CE), 其余條件不變, 問BD與DE、CE的關(guān)系如何? 請 直接寫出結(jié)果, 不需說明.
【答案】(1)見詳解;(2)見詳解;(3) BD=DE-EC.
【解析】
(1)證明△ABD≌△CAE,即可證得BD=AE,AD=CE,而AE=AD+DE=CE+DE,即可證得;
(2)證明△ABD≌△CAE,即可證得BD=AE,AD=CE,而AE= DE- AD= DE- CE,即可證得;
(3)證明△ABD≌△CAE,即可證得BD=AE,AD=CE,而AE= DE- AD= DE- CE,即可證得.
(1)證明:∵∠BAD+∠DAC=90
∠ECA+∠CAD=90
∴∠BAD=∠ACE
又∵∠ADB=∠AEC=90,AB=AC
∴⊿BAD≌⊿ACE
∴BD=AE,AD=CE
∴BD=AD+DE=CE+DE
(2)∵∠DAB+∠EAC=90
∠DBA+∠DAB=90
∴∠DBA=∠AEC
又∵AB=AC,∠BDA=∠AEC=90
∴⊿BDA≌⊿AEC
∴DB=AE,DA=EC,
∵AE= DE- AD,
∴BD=DE-EC
(3)∵∠DAB+∠EAC=90,∠DBA+∠DAB=90
∴∠DBA=∠AEC
又∵AB=AC,∠BDA=∠AEC=90
∴⊿BDA≌⊿AEC
∴DB=AE,DA=EC
∵AE= DE- AD,
∴BD=DE-EC.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校組織九年級學(xué)生參加漢字聽寫大賽,并隨機抽取部分學(xué)生成績作為樣本進行分析,繪制成如下的統(tǒng)計表:
成績x/分 | 頻數(shù) | 頻率 | |
第1段 | x<60 | 2 | 0.04 |
第2段 | 60≤x<70 | 6 | 0.12 |
第3段 | 70≤x<80 | 9 | b |
第4段 | 80≤x<90 | a | 0.36 |
第5段 | 90≤x≤100 | 15 | 0.30 |
請根據(jù)所給信息,解答下列問題:
(1)a=______,b=______;
(2)請補全頻數(shù)分布直方圖;
(3)樣本中,部分學(xué)生成績的中位數(shù)落在第_______段;
(4)已知該年級有400名學(xué)生參加這次比賽,若成績在90分以上(含90分)的為優(yōu),估計該年級成績?yōu)閮?yōu)的有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某水庫大壩的橫斷面是梯形ABCD,壩頂寬CD=3m,斜坡AD=8m,斜坡BC的坡度i=1:3,B,C間的水平距離為12m,則斜坡AD的坡角∠A=_____,壩底寬AB=______m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA、PB是⊙O的切線,A、B為切點,∠APB=60°,連接PO并延長與⊙O交于C點,連接AC,BC.
(1)求證:四邊形ACBP是菱形;
(2)若⊙O半徑為1,求菱形ACBP的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一張三角形紙片如圖甲,其中將紙片沿過點B的直線折疊,使點C落到AB邊上的E點處,折痕為如圖乙再將紙片沿過點E的直線折疊,點A恰好與點D重合,折痕為如圖丙原三角形紙片ABC中,的大小為______
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:二次函數(shù)圖象的頂點坐標是(3,5),且拋物線經(jīng)過點A(1,3).
(1)求此拋物線的表達式;
(2)如果點A關(guān)于該拋物線對稱軸的對稱點是B點,且拋物線與y軸的交點是C點,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,用同樣規(guī)格的黑白兩色的正方形瓷磚鋪設(shè)長方形地面,觀察下列圖形并解答問題.
(1)在第a個圖中,共有 塊白瓷磚和 塊黑瓷磚(用含a的代數(shù)式表示);
(2)若按上圖的方式鋪一塊長方形地面共用了420塊瓷磚,求此時a的值;
(3)已知白瓷磚每塊6元,黑瓷磚每塊8元,某工廠按如圖方式鋪設(shè)廠房地面,其中黑瓷磚的費用比白瓷磚的費用多924元,問白瓷磚和黑瓷磚各用了多少塊?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店代銷一批季節(jié)性服裝,每套代銷成本40元,第一個月每套銷售定價為52元時,可售出180套;應(yīng)市場變化調(diào)整第一個月的銷售價,預(yù)計銷售定價每增加1元,銷售量將減少10套。
(1)若設(shè)第二個月的銷售定價每套增加x元,填寫下表。
時間 | 第一個月 | 第二個月 |
每套銷售定價(元) | ||
銷售量(套) |
(2)若商店預(yù)計要在這兩個月的代銷中獲利4160元,則第二個月銷售定價每套多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,AD=6,點F是AB的中點,E為BC邊上一點,且EF⊥ED,連結(jié)DF,M為DF的中點,連結(jié)MA,ME.若AM⊥ME,則AE的長為( )
A.5 B.2 C.2 D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com