【題目】拋物線的圖象如圖所示,下列四個(gè)判斷中正確的個(gè)數(shù)是( )
①,,;②;③;④.
A. 個(gè) B. 個(gè) C. 個(gè) D. 個(gè)
【答案】B
【解析】
①根據(jù)拋物線的開口方向可確定a的符號(hào),根據(jù)a的符號(hào),結(jié)合對(duì)稱軸可確定b的符號(hào),觀察拋物線與y軸的交點(diǎn)位置,確定c的符號(hào);
②由拋物線與x軸的交點(diǎn)情況,可確定b2-4ac的符號(hào);
③對(duì)稱軸:x=-=1,變形即可判斷;
④當(dāng)x=1時(shí),觀察函數(shù)值的符號(hào)即可.
①∵拋物線開口向上,與y軸交于正半軸,
∴a>0,c>0,又x=-=1>0,b<0,錯(cuò)誤;
②∵拋物線與x軸有兩個(gè)交點(diǎn),
∴b2-4ac>0,錯(cuò)誤;
③對(duì)稱軸:x=-=1,2a+b=0,正確;
④觀察圖象可知,當(dāng)x=1時(shí),y<0,
即:a+b+c<0,正確.
正確的有兩個(gè),故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC的三邊a,b,c,滿足a+b2+|c﹣6|+28=4+10b,則△ABC的外接圓半徑=__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,小華從一個(gè)圓形場(chǎng)地的A點(diǎn)出發(fā),沿著與半徑OA夾角為α的方向行走,走到場(chǎng)地邊緣B后,再沿著與半徑OB夾角為α的方向折向行走.按照這種方式,小華第五次走到場(chǎng)地邊緣時(shí)處于弧AB上,則α取值范圍是( )
A. 36°45° B. 45°54° C. 54°72° D. 72°90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在中,于E,,D是AE上的一點(diǎn),且,連接BD,CD.
試判斷BD與AC的位置關(guān)系和數(shù)量關(guān)系,并說(shuō)明理由;
如圖2,若將繞點(diǎn)E旋轉(zhuǎn)一定的角度后,試判斷BD與AC的位置關(guān)系和數(shù)量關(guān)系是否發(fā)生變化,并說(shuō)明理由;
如圖3,若將中的等腰直角三角形都換成等邊三角形,其他條件不變.
試猜想BD與AC的數(shù)量關(guān)系,請(qǐng)直接寫出結(jié)論;
你能求出BD與AC的夾角度數(shù)嗎?如果能,請(qǐng)直接寫出夾角度數(shù);如果不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(問(wèn)題背景)
如圖1,在四邊形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究線段AC,BC,CD之間的數(shù)量關(guān)系.
小吳同學(xué)探究此問(wèn)題的思路是:將△BCD繞點(diǎn)D,逆時(shí)針旋轉(zhuǎn)90°到△AED處,點(diǎn)B,C分別落在點(diǎn)A,E處(如圖2),易證點(diǎn)C,A,E在同一條直線上,并且△CDE是等腰直角三角形,所以CE= CD,從而得出結(jié)論:AC+BC=CD
(簡(jiǎn)單應(yīng)用)
(1)在圖1中,若AC=3, CD=,則AB= .
(2)如圖3,AB是⊙O的直徑,點(diǎn)C、D在⊙O上,∠C=45°,若AB=13,BC=12,求CD的長(zhǎng).
(拓展規(guī)律)
(3)如圖4,∠ACB=∠ADB=90°,AD=BD,若AC=m,CD=n,則BC的長(zhǎng)為 .(用含m,n的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)的圖象如圖所示,有以下結(jié)論:
①;②;③;④;⑤
其中所有正確結(jié)論的序號(hào)是( )
A. ①②④ B. ①③④ C. ②③⑤ D. ①②④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,二次函數(shù)的圖象與軸正半軸交于點(diǎn).
求證:該二次函數(shù)的圖象與軸必有兩個(gè)交點(diǎn);
設(shè)該二次函數(shù)的圖象與軸的兩個(gè)交點(diǎn)中右側(cè)的交點(diǎn)為點(diǎn),若,將直線向下平移個(gè)單位得到直線,求直線的解析式;
在的條件下,設(shè)為二次函數(shù)圖象上的一個(gè)動(dòng)點(diǎn),當(dāng)時(shí),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)都在直線的下方,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩名大學(xué)生競(jìng)選班長(zhǎng),現(xiàn)對(duì)甲、乙兩名應(yīng)聘者從筆試、口試、得票三個(gè)方面表現(xiàn)進(jìn)行評(píng)分,各項(xiàng)成績(jī)?nèi)绫硭荆?/span>
應(yīng)聘者 | 筆試 | 口試 | 得票 |
甲 | 85 | 83 | 90 |
乙 | 80 | 85 | 92 |
(1)如果按筆試占總成績(jī)20%、口試占30%、得票占50%來(lái)計(jì)算各人的成績(jī),試判斷誰(shuí)會(huì)競(jìng)選上?
(2)如果將筆試、口試和得票按2:1:2來(lái)計(jì)算各人的成績(jī),那么又是誰(shuí)會(huì)競(jìng)選上?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形網(wǎng)格中(每個(gè)小正方形的邊長(zhǎng)都為1個(gè)單位),在平面直角坐標(biāo)系內(nèi),△ABC的三個(gè)頂點(diǎn)分別為(2,-4),B(4,-4),C(1,-1).
(1)請(qǐng)?jiān)趫D中標(biāo)出△ABC的外接圓的圓心P的位置,并填寫: 圓心P的坐標(biāo):P( , )
(2)畫出△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后的 ;
(3)在(2)的條件下,求線段BC掃過(guò)的面積(結(jié)果保留π).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com