【題目】如圖,已知點A在反比函數(shù)y=(k<0)的圖象上,點B在直線y=x﹣3的圖象上,點B的縱坐標為﹣1,AB⊥x軸,且S△OAB=4.
(1)求點A的坐標和k的值;
(2)若點P在反比例函數(shù)y=(k<0)的圖象上,點Q在直線y=x﹣3的圖象上,P、Q兩點關(guān)于y軸對稱,設(shè)點P的坐標為(m,n),求+的值.
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,拋物線的頂點在直線上.
(1)求直線的函數(shù)表達式;
(2)現(xiàn)將拋物線沿該直線方向進行平移,平移后的拋物線的頂點為點,與直線的另一個交點為點,與軸的右交點為點(點不與點重合),連接,.
①如圖,在平移過程中,當點在第四象限且的面積為60時,求平移的距離的長;
②在平移過程中,當是以線段為一條直角邊的直角三角形時,求出所有滿足條件的點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,P是半圓弧上一動點,連接PA、PB,過圓心O作交PA于點C,連接已知,設(shè)O,C兩點間的距離為xcm,B,C兩點間的距離為ycm.
小東根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進行探究.
下面是小東的探究過程,請補充完整:
通過取點、畫圖、測量,得到了x與y的幾組值,如下表:
0 | 1 | 2 | 3 | ||||
3 | 6 |
說明:補全表格時相關(guān)數(shù)據(jù)保留一位小數(shù)
建立直角坐標系,描出以補全后的表中各對應(yīng)值為坐標的點,畫出該函數(shù)的圖象;
結(jié)合畫出的函數(shù)圖象,解決問題:直接寫出周長C的取值范圍是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中有△ABC,其中A(﹣3,4),B(﹣4,2),C(﹣2,1).把△ABC繞原點順時針旋轉(zhuǎn)90°,得到△A1B1C1.再把△A1B1C1向左平移2個單位,向下平移5個單位得到△A2B2C2.
(1)畫出△A1B1C1和△A2B2C2.
(2)直接寫出點B1、B2坐標.
(3)P(a,b)是△ABC的AC邊上任意一點,△ABC經(jīng)旋轉(zhuǎn)平移后P對應(yīng)的點分別為P1、P2,請直接寫出點P1、P2的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,為了測量某風景區(qū)內(nèi)一座塔AB的高度,小明分別在塔的對面一樓房CD的樓底C、樓頂D處,測得塔頂A的仰角為45°和30°,已知樓高CD為10m,求塔的高度.(sin30°=0.50,cos30°≈0.87,tan30°≈0.58)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某種蔬菜每千克售價(元)與銷售月份之間的關(guān)系如圖1所示,每千克成本(元)與銷售月份之間的關(guān)系如圖2所示,其中圖1中的點在同一條線段上,圖2中的點在同一條拋物線上,且拋物線的最低點的坐標為(6,1).
(1)求出與之間滿足的函數(shù)表達式,并直接寫出的取值范圍;
(2)求出與之間滿足的函數(shù)表達式;
(3)設(shè)這種蔬菜每千克收益為元,試問在哪個月份出售這種蔬菜,將取得最大值?并求出此最大值.(收益=售價-成本)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某次模擬考試后,抽取 m 名學生的數(shù)學成績進行整理分組,形成如下表格(x 代表成績),并繪制出扇形統(tǒng)計圖和頻數(shù)分布直方圖(橫坐標表示成績,單位:分).
A 組 | 140<x≤150 |
B 組 | 130<x≤140 |
C 組 | 120<x≤130 |
D 組 | 110<x≤120 |
E 組 | 100<x≤110 |
(1)m 的值為多少,扇形統(tǒng)計圖中 D 組對應(yīng)的圓心角是多少度.
(2)請補全條形統(tǒng)計圖,并標注出相應(yīng)的人數(shù).
(3)若此次考試數(shù)學成績 130 分以上的為優(yōu)秀,參加此次模擬考的學生總數(shù)為 2000,請估算此次考試數(shù)學成績優(yōu)秀的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,拋物線y=ax2﹣4ax+3a的最高點的縱坐標是2.
(1)求拋物線的對稱軸及拋物線的表達式;
(2)將拋物線在1≤x≤4之間的部分記為圖象G1,將圖象G1沿直線x=1翻折,翻折后的圖象記為G2,圖象G1和G2組成圖象G.過(0,b)作與y軸垂直的直線l,當直線l和圖象G只有兩個公共點時,將這兩個公共點分別記為P1(x1,y1),P(x2,y2),求b的取值范圍和x1+x2的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com