【題目】如圖,在△ABC中,∠C=90°,AB=10,,經(jīng)過點C且與邊AB相切的動圓與CA、CB分別交于點D、E,則線段DE長度的最小值是_____.
【答案】4.8
【解析】
設(shè)DE的中點為F,圓F與AB的切點為P,連接FP,連接CF,CP,則有FP⊥AB;FC+FP=DE,由三角形的三邊關(guān)系知,CF+FP>CP;只有當(dāng)點F在CP上時,FC+FP=PC有最小值為CP的長,即當(dāng)點F在直角三角形ABC的斜邊AB的高CP上時,DE=CP有最小值,由直角三角形的面積公式知,此時CP=BCAC÷AB=4.8.
解:如圖,設(shè)DE的中點為F,圓F與AB的切點為P,連接FP,連接CF,CP,則FP⊥AB.
∵AB=10,,
∴AC=8,BC=6
∵∠ACB=90°,
∴FC+FP=DE,
∴CF+FP>CP,
∵當(dāng)點F在直角三角形ABC的斜邊AB的高CP上時,PC=DE有最小值,
∴DE=CP==4.8
故答案為4.8.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,函數(shù)y=(x>0)的圖象G經(jīng)過點A(4,1),與直線y=x+b的圖象交于點B,與y軸交于點C.其中橫、縱坐標(biāo)都是整數(shù)的點叫做整點.記圖象G在點A、B之間的部分與線段OA、OC、BC圍成的區(qū)域(不含邊界)為W.若W內(nèi)恰有4個整點,結(jié)合函數(shù)圖象,b的取值范圍是( )
A.﹣≤b<1或<b≤B.﹣≤b<1或<b≤
C.﹣≤b<﹣1或﹣<b≤D.﹣≤b<﹣1或<b≤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】目前我市“校園手機(jī)”現(xiàn)象越來越受到社會關(guān)注,針對這種現(xiàn)象,我市某中學(xué)九年級數(shù)學(xué)興趣小組的同學(xué)隨機(jī)調(diào)查了學(xué)校若干名家長對“中學(xué)生帶手機(jī)”現(xiàn)象的看法.統(tǒng)計整理并制作了如下的統(tǒng)計圖:
(1)這次調(diào)查的家長總數(shù)為__________,家長表示“不贊同”的人數(shù)為________________;
(2)從這次接受調(diào)查的家長中隨機(jī)抽查一個,恰好是“贊同”的家長的概率是____________;
(3)求圖②中表示家長“無所謂”的扇形圓心角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請你用學(xué)習(xí)“一次函數(shù)”時積累的經(jīng)驗和方法研究函數(shù)的圖象和性質(zhì),并解決問題.
完成下列步驟,畫出函數(shù)的圖象;
列表、填空;
x | 0 | 1 | 2 | 3 | |||||
y | 3 | ______ | 1 | ______ | 1 | 2 | 3 |
描點:
連線
觀察圖象,當(dāng)x______時,y隨x的增大而增大;
結(jié)合圖象,不等式的解集為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點在拋物線上,且該拋物線與軸分別交于點和點,與軸交于點.
(1)求拋物線的解析式及對稱軸;
(2)若點是拋物線對稱軸上的一個動點,求的最小值;
(3)點是是拋物線上除點外的一點,若與的面積相等,求點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)與y軸交于點C(0,4),與x軸交于A(﹣2,0),點B(4,0).
(1)求拋物線的解析式;
(2)若點M是拋物線上的一動點,且在直線BC的上方,當(dāng)S△MBC取得最大值時,求點M的坐標(biāo);
(3)在直線的上方,拋物線是否存在點M,使四邊形ABMC的面積為15?若存在,求出點M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線經(jīng)過點,與軸交于兩點
求拋物線的解析式;
如圖1,直線交拋物線于兩點,為拋物線上之間的動點,過點作軸于點于點,求的最大值;
如圖2,平移拋物線的頂點到原點得拋物線,直線交拋物線于、兩點,在拋物線上存在一個定點,使,求點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠A=∠C=90°.
(1)用直尺和圓規(guī)作⊙O,使它經(jīng)過A、B、D三點(保留作圖痕跡);
(2)點C是否在⊙O上?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AD=4,AB=2.點E是AB的中點,點F是BC邊上的任意一點(不與B、C重合),△EBF沿EF翻折,點B落在B'處,當(dāng)DB'的長度最小時,BF的長度為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com