【題目】如圖,從直徑為2cm的圓形紙片中,剪出一個圓心角為90°的扇形OAB,且點(diǎn)O、A、B在圓周上,把它圍成一個圓錐,則圓錐的底面圓的半徑是 cm.
【答案】.
【解析】
試題分析:本題考查了圓錐的計(jì)算:圓錐的側(cè)面展開圖為扇形,扇形的弧長等于圓錐底面圓的周長,扇形的半徑等于圓錐的母線長.也考查了圓周角定理和弧長公式.設(shè)圓錐的底面圓的半徑為r,由∠AOB=90°得到AB為圓形紙片的直徑,則OB=AB=cm,根據(jù)弧長公式計(jì)算出扇形OAB的弧AB的長,然后根據(jù)圓錐的側(cè)面展開圖為扇形,扇形的弧長等于圓錐底面圓的周長進(jìn)行計(jì)算.
解:設(shè)圓錐的底面圓的半徑為r,
連結(jié)AB,如圖,
∵扇形OAB的圓心角為90°,
∴∠AOB=90°,
∴AB為圓形紙片的直徑,
∴AB=2cm,
∴OB=AB=cm,
∴扇形OAB的弧AB的長==π,
∴2πr=π,
∴r=(cm).
故答案為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某校“閱讀工程”的開展情況,區(qū)教育局從該校初中生中隨機(jī)抽取了150名學(xué)生進(jìn)行了閱讀情況的調(diào)查問卷,并繪制了如圖所示不完整的統(tǒng)計(jì)圖:
根據(jù)上述統(tǒng)計(jì)圖提供的信息,回答下列問題:
(1)初中生每天閱讀時間在哪一段的人數(shù)最多?每天閱讀時間在B段的扇形的圓心角是多少度?
(2)若將寫讀后感、筆記積累、畫圈點(diǎn)讀三種方式稱為有記憶閱讀,求筆記積累人數(shù)占有記憶閱讀人數(shù)的百分比,并補(bǔ)全條形統(tǒng)計(jì)圖.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)某手機(jī)收費(fèi)標(biāo)準(zhǔn),從甲地向乙地打長途電話,前3分鐘收費(fèi)1.8元,3分鐘后每分鐘加收費(fèi)0.8元.
(1)若通話時間為x分鐘(x≥3),則應(yīng)收費(fèi)多少元?
(2)若小王按此標(biāo)準(zhǔn)打一個電話花了8.2元,則這個電話小王打了幾分鐘?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示.點(diǎn)C,B 是線段 AD 上的兩點(diǎn), AC : CB : BD 3 :1: 4 ,點(diǎn) E , F 分別是 AB,CD 的中點(diǎn),且 EF 14 ,求 AB,CD 的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“十年樹木,百年樹人”,教師的素養(yǎng)關(guān)系到國家的未來.我市某區(qū)招聘音樂教師采用筆試、專業(yè)技能測試、說課三種形式進(jìn)行選拔,這三項(xiàng)的成績滿分均為100分,并按2:3:5的比例折合納入總分,最后,按照成績的排序從高到低依次錄。搮^(qū)要招聘2名音樂教師,通過筆試、專業(yè)技能測試篩選出前6名選手進(jìn)入說課環(huán)節(jié),這6名選手的各項(xiàng)成績見表:
序號 | 1 | 2 | 3 | 4 | 5 | 6 |
筆試成績 | 66 | 90 | 86 | 64 | 65 | 84 |
專業(yè)技能測試成績 | 95 | 92 | 93 | 80 | 88 | 92 |
說課成績 | 85 | 78 | 86 | 88 | 94 | 85 |
(1)求出說課成績的中位數(shù)、眾數(shù);
(2)已知序號為1,2,3,4號選手的成績分別為84.2分,84.6分,88.1分,80.8分,請你判斷這六位選手中序號是多少的選手將被錄用?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,OA⊥OB,AB⊥x軸于點(diǎn)C,點(diǎn)A(,1)在反比例函數(shù)的圖象上.
(1)求反比例函數(shù)的表達(dá)式;
(2)在x軸的負(fù)半軸上存在一點(diǎn)P,使得S△AOP=S△AOB,求點(diǎn)P的坐標(biāo);
(3)若將△BOA繞點(diǎn)B按逆時針方向旋轉(zhuǎn)60°得到△BDE.直接寫出點(diǎn)E的坐標(biāo),并判斷點(diǎn)E是否在該反比例函數(shù)的圖象上,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D,E為△ABC邊AB上兩點(diǎn),F,H分別在AC,BC上,∠1+∠2=180°
(1)求證:EF∥DH;
(2)若∠ACB=90°,∠DHB=25°,求∠EFC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,AB∥DE,AC∥DF,AC=DF下列條件中,不能判斷△ABC≌△DEF的是( 。
A. AB=DE B. ∠B=∠E C. EF=BC D. EF∥BC
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com