【題目】為了加強(qiáng)公民的節(jié)水意識(shí),合理利用水資源,嘉興某地區(qū)采用價(jià)格調(diào)控的手段達(dá)到節(jié)水的目的,該市自來水收費(fèi)的收費(fèi)標(biāo)準(zhǔn)如下表:
例如:某戶居民1月份用水8立方米,應(yīng)收水費(fèi)為2×6+4×(8-6)=20(元).
請根據(jù)上表的內(nèi)容解答下列問題:
(1)若某戶居民2月份用水4立方米,則應(yīng)收水費(fèi)多少元?
(2)若某戶居民3月份交水費(fèi)44元,則用水量為多少立方米?
(3)若某戶居民4月份用水a立方米,請用含a的代數(shù)式表示應(yīng)收水費(fèi).
【答案】(1)8元;(2)12立方米;(3)當(dāng)a≤6時(shí),水費(fèi)為2a元;當(dāng)6<a≤10時(shí),水費(fèi)為(4a-12)元
當(dāng)10<a時(shí),水費(fèi)為(8a-52)元
【解析】
(1)利用用數(shù)量的范圍確定單價(jià)算出結(jié)果;
(2)44元的水費(fèi)可知用水量超過10立方米,分段計(jì)算即可得出答案;
(3)分三種情況:5月份用水量不超過6立方米時(shí);超過6立方米但不超過10立方米時(shí);超過10立方米時(shí),分別列式即可.
(1)2×4=8(元)
答:應(yīng)收水費(fèi)8元;
(2)10+(44-2×6-4×4) ÷8=10+2=12(立方米)
答:用水量為12立方米;
(3)當(dāng)a≤6時(shí),水費(fèi)為2a元;
當(dāng)6>a≤10時(shí),水費(fèi)為(4a-12)元;
當(dāng)a>10時(shí),水費(fèi)為(8a-52)元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)戶承包荒山若干畝種植果樹.2018年水果總產(chǎn)量為18000千克,此水果在市場上每千克售a元,在果園每千克售b元(b<a).該農(nóng)戶將水果運(yùn)到市場出售平均每天售出1000千克,需8人幫忙,每人每天付工資100元,農(nóng)用車運(yùn)費(fèi)及其他各項(xiàng)費(fèi)用平均每天200元.若只能選擇一種方式出售:
(1)分別用a,b表示兩種方式出售全部水果的收入;
(2)若a=2,b=1,且兩種出售水果方式都在相同的時(shí)間內(nèi)售完全部水果,請你通過計(jì)算說明選擇哪種出售方式收入較高.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,CO⊥AB于O,D在⊙O上,連接BD,CD,延長CD與AB的延長線交于E,F(xiàn)在BE上,且FD=FE.
(1)求證:FD是⊙O的切線;
(2)若AF=8,tan∠BDF=,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,∠ACB=30°,將一塊直角三角板的直角頂點(diǎn)P放在兩對角線AC,BD的交點(diǎn)處,以點(diǎn)P為旋轉(zhuǎn)中心轉(zhuǎn)動(dòng)三角板,并保證三角板的兩直角邊分別于邊AB,BC所在的直線相交,交點(diǎn)分別為E,F(xiàn).
(1)當(dāng)PE⊥AB,PF⊥BC時(shí),如圖1,則的值為 ;
(2)現(xiàn)將三角板繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)α(0°<α<60°)角,如圖2,求的值;
(3)在(2)的基礎(chǔ)上繼續(xù)旋轉(zhuǎn),當(dāng)60°<α<90°,且使AP:PC=1:2時(shí),如圖3,的值是否變化?證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,我國某大使館內(nèi)有一單杠支架,支架高2.8 m,在大使辦公樓前豎立著高28 m的旗桿,旗桿底部離大使辦公樓墻根的垂直距離為17 m,在一個(gè)陽光燦爛的某一時(shí)刻,單杠支架的影長為2.24 m,大使辦公室窗口離地面5 m,問此刻中華人民共和國國旗的影子是否能達(dá)到大使辦公室的窗口?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中, ,,將沿折疊,使點(diǎn)落在直角邊上的點(diǎn)處,設(shè)與邊分別交于點(diǎn),如果折疊后與均為等腰三角形,那么__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)都在坐標(biāo)軸上,A,B兩點(diǎn)關(guān)于y軸對稱,點(diǎn)C是y軸正半軸上一個(gè)動(dòng)點(diǎn),AD是角平分線.
(1)如圖1,若∠ACB=90°,直接寫出線段AB,CD,AC之間數(shù)量關(guān)系;
(2)如圖2,若AB=AC+BD,求∠ACB的度數(shù);
(3)如圖2,若∠ACB=100°,求證:AB=AD+CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個(gè)質(zhì)地均勻的正四面體的四個(gè)面上依次標(biāo)有數(shù)字-2,0,1,2,連續(xù)拋擲兩次,朝下一面的數(shù)字分別是a,b,將其作為M點(diǎn)的橫、縱坐標(biāo),則點(diǎn)M(a,b)落在以A(-2,0),B(2,0),C(0,2)為頂點(diǎn)的三角形內(nèi)(包含邊界)的概率是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列計(jì)算過程,猜想立方根.
=1 =8 =27 =64 =125 =216 =343 =512 =729
(1)小明是這樣試求出19683的立方根的,先估計(jì)19683的立方根的個(gè)位數(shù), 猜想它的個(gè)位數(shù)為 , 又由<19000< ,猜想19683的立方根十位數(shù)為 ,驗(yàn)證得19683的立方根是 .
(2)請你根據(jù)(1)中小明的方法,完成如下填空:
① = ; ②= ;③= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com