【題目】如圖,矩形ABCD中,∠ACB=30°,將一塊直角三角板的直角頂點P放在兩對角線AC,BD的交點處,以點P為旋轉中心轉動三角板,并保證三角板的兩直角邊分別于邊AB,BC所在的直線相交,交點分別為E,F(xiàn).
(1)當PE⊥AB,PF⊥BC時,如圖1,則的值為 ;
(2)現(xiàn)將三角板繞點P逆時針旋轉α(0°<α<60°)角,如圖2,求的值;
(3)在(2)的基礎上繼續(xù)旋轉,當60°<α<90°,且使AP:PC=1:2時,如圖3,的值是否變化?證明你的結論.
【答案】解:(1)。
(2)如答圖1,過點P作PM⊥AB于點M,PN⊥BC于點N,則PM⊥PN。
∵PM⊥PN,PE⊥PF,∴∠EPM=∠FPN。
又∵∠PME=∠PNF=90°,∴△PME∽△PNF。
∴。
由(1)知,,
∴。
(3)變化。證明如下:
如答圖2,過點P作PM⊥AB于點M,PN⊥BC于點N,則PM⊥PN,PM∥BC,PN∥AB。
∵PM∥BC,PN∥AB,
∴∠APM=∠PCN,∠PAM=∠CPN。
∴△APM∽△PCN。
∴,得CN=2PM。
在Rt△PCN中,,
∴。
∵PM⊥PN,PE⊥PF,∴∠EPM=∠FPN。
又∵∠PME=∠PNF=90°,∴△PME∽△PNF。
∴。
∴的值發(fā)生變化
【解析】
試題(1)證明△APE≌△PCF,得PE=CF;在Rt△PCF中,解直角三角形求得的值:
∵矩形ABCD,∴AB⊥BC,PA=PC。
∵PE⊥AB,BC⊥AB,∴PE∥BC。∴∠APE=∠PCF。
∵PF⊥BC,AB⊥BC,∴PF∥AB。∴∠PAE=∠CPF。
∵在△APE與△PCF中,∠PAE=∠CPF,PA=PC,∠APE=∠PCF,
∴△APE≌△PCF(ASA)。∴PE=CF。
在Rt△PCF中,,∴。
(2)如答圖1所示,作輔助線,構造直角三角形,證明△PME∽△PNF,并利用(1)的結論,求得的值;
(3)如答圖2所示,作輔助線,構造直角三角形,首先證明△APM∽△PCN,求得;然后證明△PME∽△PNF,從而由求得的值。與(1)(2)問相比較,的值發(fā)生了變化。
科目:初中數(shù)學 來源: 題型:
【題目】小明每天早上要在7:50之前趕到距家1000 m的學校.小明每天以80 m/min的速度出發(fā).
(1)小明出發(fā)5 min后,小明的爸爸發(fā)現(xiàn)他忘了帶數(shù)學書.于是,爸爸立即以 180 m/min的速度去追小明,并且在途中追上了小明.爸爸追上小明用了多長時間?
(2)小明出發(fā) 8 min后,媽媽急于上班,門鎖碰上時,發(fā)現(xiàn)忘帶手機和鑰匙,于是立即以120 m/min的速度去追小明拿鑰匙.請問媽媽能否在小明進學校前追上小明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,點D,E是位于AB兩側的半圓AB上的動點,射線DC切⊙O于點D.連接DE,AE,DE與AB交于點P,F是射線DC上一動點,連接FP,FB,且∠AED=45°.
(1)求證:CD∥AB;
(2)填空:
①若DF=AP,當∠DAE=_________時,四邊形ADFP是菱形;
②若BF⊥DF,當∠DAE=_________時,四邊形BFDP是正方形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線AB分別交坐標軸于A(2,0)、B(0,-6)兩點直線上任意一點P(x,y),設點P到x軸和y軸的距離分別是m和n,則m+n的最小值為( )
A.2B.3C.5D.6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的一元二次方程(x﹣3)(x﹣2)=|m|.
(1)求證:對于任意實數(shù)m,方程總有兩個不相等的實數(shù)根;
(2)若方程的一個根是1,求m的值及方程的另一個根.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】動手操作:如圖①是一個長為2a,寬為2b的長方形,沿圖中的虛線剪開分成四個大小相等的長方形,然后按照圖②所示拼成一個正方形.
提出問題:
(1)觀察圖②,請用兩種不同的方法表示陰影部分的面積:_____________,_____________;
(2)請寫出三個代數(shù)式(a+b)2,(a-b)2,ab之間的一個等量關系:___________________________;
問題解決:根據上述(2)中得到的等量關系,解決下列問題:已知x+y=8,xy=7,求x-y的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了加強公民的節(jié)水意識,合理利用水資源,嘉興某地區(qū)采用價格調控的手段達到節(jié)水的目的,該市自來水收費的收費標準如下表:
例如:某戶居民1月份用水8立方米,應收水費為2×6+4×(8-6)=20(元).
請根據上表的內容解答下列問題:
(1)若某戶居民2月份用水4立方米,則應收水費多少元?
(2)若某戶居民3月份交水費44元,則用水量為多少立方米?
(3)若某戶居民4月份用水a立方米,請用含a的代數(shù)式表示應收水費.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價不低于成本,且不高于80元,經市場調查,每天的銷售量y(千克)與每千克售價x(元)滿足一次函數(shù)關系,部分數(shù)據如下表:
(1)求y與x之間的函數(shù)表達式;
(2)設商品每天的總利潤為W(元),求W與x之間的函數(shù)表達式(利潤=收入-成本);
(3)試說明(2)中總利潤W隨售價x的變化而變化的情況,并指出售價為多少元時獲得最大利潤,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠AGF=∠ABC,∠1+∠2=180°.
(1)試判斷BF與DE的位置關系,并說明理由;
(2)若BF⊥AC,∠2=150°,求∠AFG的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com