【題目】甲、乙兩同學玩轉盤游戲時,把質地相同的兩個盤A、B分別平均分成2份和3份,并在每一份內標有數(shù)字如圖.游戲規(guī)則:甲、乙兩同學分別同時轉動兩個轉盤各1次,當轉盤停止后,指針所在區(qū)域的數(shù)字之積為偶數(shù)時甲勝;數(shù)字之積為奇數(shù)時乙勝.若指針恰好在分割線上,則需要重新轉動轉盤.
(1)用樹狀圖或列表的方法,求甲獲勝的概率;
(2)這個游戲規(guī)則對甲、乙雙方公平嗎?請判斷并說明理由
【答案】(1) ;(2)這個游戲規(guī)則對甲、乙雙方不公平.
【解析】
(1)畫樹狀圖展示所有6種等可能的結果數(shù),找出指針所在區(qū)域的數(shù)字之積為偶數(shù)的結果數(shù),然后根據(jù)概率公式計算;
(2)利用甲勝的概率=,乙勝的概率=,從而可判斷這個游戲規(guī)則對甲、乙雙方不公平.
解:(1)畫樹狀圖為:
共有6種等可能的結果數(shù),其中指針所在區(qū)域的數(shù)字之積為偶數(shù)的結果數(shù)為4,
所以甲勝的概率==;
(2)這個游戲規(guī)則對甲、乙雙方不公平.
理由如下:
∵甲勝的概率=,
∴乙勝的概率=,
∵≠,
∴這個游戲規(guī)則對甲、乙雙方不公平.
科目:初中數(shù)學 來源: 題型:
【題目】某大學公益組織計劃購買兩種的文具套裝進行捐贈,關注留守兒童經(jīng)洽談,購買套裝比購買套裝多用20元,且購買5套套裝和4套套裝共需820元.
(1)求購買一套套裝文具、一套套裝各需要多少元?
(2)根據(jù)該公益組織的募捐情況和捐助對象情況,需購買兩種套裝共60套,要求購買兩種套裝的總費用不超過5240元,則購買套裝最多多少套?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD與正三角形AEF的頂點A重合,將△AEF繞頂點A旋轉,在旋轉過程中,當BE=DF時,∠BAE的大小可以是( ).
A.15°B.165°C.15°或165°D.90°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ABC中,∠BAC=90°,D是BC的中點,E是AD的中點,過點A作AF∥BC交BE的延長線于點F.
(1)求證:△AEF≌△DEB;
(2)證明四邊形ADCF是菱形;
(3)若AC=3,AB=4,求菱形ADCF的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,在△ABC中,∠ACB是直角,∠B=60°,AD,CE分別是∠BAC,∠BCA的平分線,AD,CE相交于點F,
①請你猜想寫出FE與FD之間的數(shù)量關系,不用說明理由;
②判斷∠AFC與∠B的數(shù)量關系,請說明理由.
(2)如圖2,在△ABC中,如果∠ACB不是直角,而(1)中其他條件不變,請問你在(1)中所得FE與FD之間的數(shù)量關系是否依然成立?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次根式中也有這種相輔相成的“對子”.如:,=3,它們的積不含根號,我們說這兩個二次根式互為有理化因式,其中一個是另一個的有理化因式,于是,二次根式除法可以這樣理解:如:,.像這樣,通過分子、分母同乘以一個式子把分母中的根號化去或把根號中的分母化去,叫做分母有理化.
解決問題:
(1)3-的有理化因式是_________,的分母有理化得__________;
(2)計算:
①已知:,,求的值;
②.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=60°,∠CAB=45°,BC=4,點D為AB邊上一個動點,連接CD,以DA、DC為一組鄰邊作平行四邊形ADCE,則對角線DE的最小值是( )
A.+B.1+C.4D.2+2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知反比例函數(shù)與一次函數(shù)的圖象交于點A(1,8),B(-4,m)兩點.
(1)求k1,k2,b的值;
(2)求△AOB的面積;
(3)請直接寫出不等式的解。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形紙片ABCD中,AB=4,AD=12,將矩形紙片折疊,使點C落在AD邊上的點M處,折痕為PE,此時PD=3.
(1)求MP的值;
(2)在AB邊上有一個動點F,且不與點A,B重合.當AF等于多少時,△MEF的周長最?
(3)若點G,Q是AB邊上的兩個動點,且不與點A,B重合,GQ=2.當四邊形MEQG的周長最小時,求最小周長值.(計算結果保留根號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com