【題目】如圖1,在菱形ABCD中,∠BAD120°,AB4cm.動點E在射線BC上勻速運動,其運動速度為1cm/s,運動時間為ts.連接AE,并將線段AE繞點A順時針旋轉(zhuǎn)120°AF,連接BF

1)試說明無論t為何值,ABF的面積始終為定值,并求出該定值;

2)如圖2,連接EF,BD,交于點HBDAE交于點G,當t為何值時,HEG為直角三角形?

3)如圖3、當F、B、D三點共線時,求tanFEB的值.

【答案】(1)詳見解析;(2)①當∠HGE90°時,點E與點C重合,此時t4;②當∠GHE90°時,t2;(3

【解析】

1)由SAS證明ABF≌△ADE,由ADBC得出動點EAD的距離始終不變,得出SADE是個定值,由三角形面積公式即可得出結果;

2)由等腰三角形的性質(zhì)和三角形內(nèi)角和定理得出∠AEF30°,

①當∠HGE90°時,點E與點C重合,此時t4

②當∠GHE90°時,證出AEBC,在RtABE中,AB4cm,∠ABE60°,由直角三角形的性質(zhì)得出BEAB2cm,此時t2

3)證出∠AFB=∠FEB,連接ACBD于點O,由菱形的性質(zhì)得出∠AOB90°,在RtABO中,AB4,∠ABO30°,由直角三角形的性質(zhì)得出AO2,BO2,求出FB4,得出FOFB+BO6,由三角函數(shù)定義即可得出結果.

1)證明:∵∠BAD=∠EAF120°

∴∠BAD﹣∠BAE=∠EAF﹣∠BAE,

∴∠FAB=∠EAD;

∵四邊形ABCD是菱形,

ABAD,

ABFADE中,,

∴△ABF≌△ADESAS),

ADBC,

∴動點EAD的距離始終不變,

SADE是個定值,

SABFSADE×4×4×sin60°×4×24cm2

2)解:∵AEAF,∠EAF120°

∴∠AEF30°,

①當∠HGE90°時,點E與點C重合,

此時t4

②當∠GHE90°時,

∵∠AEF30°,

∴∠HGE60°

∵四邊形ABCD為菱形,∠BAD120°,

∴∠GBE30°,

∴∠GEB90°

AEBC,

RtABE中,AB4cm,∠ABE60°

BEAB2cm,

此時t2;

3)解:∵AFAE,∠EAF120°,

∴∠BFE+AFB30°,

∵∠FBE150°,

∴∠BFE+FEB30°,

∴∠AFB=∠FEB

連接ACBD于點O,如圖3所示:

∵四邊形ABCD是菱形,

ACBD

∴∠AOB90°,

RtABO中,AB4,∠ABO30°,

AOAB2BO2,

FB×AO4,

FB4,

FOFB+BO6,

tanFEBtanAFB

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABO的直徑,AB=4cmCAB上一動點,過點C的直線交ODE兩點,且∠ACD=60°,DFAB于點F,EGAB于點G,當點CAB上運動時,設AF=xcmDE=ycm(x的值為03時,y的值為2),探究函數(shù)y隨自變量x的變化而變化的規(guī)律.

1)通過取點、畫圖、測量,得到了xy的幾組對應值,如下表:

x/cm

0

0.40

0.55

1.00

1.80

2.29

2.61

3

y/cm

2

3.68

3.84

3.65

3.13

2.70

2

2)建立平面直角坐標系,描出以補全后的表中各對對應值為坐標的點,畫出該函數(shù)的圖象;

3)結合畫出的函數(shù)圖象,解決問題:點F與點O重合時,DE長度約為    cm(結果保留一位小數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于的方程.

1)求證:不論為任何實數(shù),此方程總有實數(shù)根;

2)若拋物線軸交于兩個不同的整數(shù)點,且為正整數(shù),試確定此拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知開口向上的拋物線軸于點,,函數(shù)值的最小值是

1)求拋物線的解析式.

2)點為拋物線上的點,并在對稱軸的左側(cè).作軸交拋物線于點,連結,且

①求的值.

②若點在線段上,以點為圓心,為半徑畫圓.當的一邊相切時,求點的橫坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,點EBC邊上的一點,且AEBD,垂足為點F,∠DAE2BAE

1)求證:BFDF13;

2)若四邊形EFDC的面積為11,求CEF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了推進球類運動的發(fā)展,某校組織校內(nèi)球類運動會,分籃球、足球、排球、羽毛球、乒乓球五項,要求每位學生必須參加一項并且只能參加一項,某班有一名學生根據(jù)自己了解的班內(nèi)情況繪制了如圖所示的不完整統(tǒng)計表和扇形統(tǒng)計圖.

請根據(jù)圖表中提供的信息,解答下列問題:

(1)圖表中m=________,n=________;

(2)若該校學生共有1000人,則該校參加羽毛球活動的人數(shù)約為________人;

(3)該班參加乒乓球活動的4位同學中,有3位男同學(分別用A,B,C表示)和1位女同學(用D表示),現(xiàn)準備從中選出兩名同學參加雙打比賽,用樹狀圖或列表法求出恰好選出一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】今年5月,某大型商業(yè)集團隨機抽取所屬的部分商業(yè)連鎖店進行評估,將抽取的各商業(yè)連鎖店按照評估成績分成了、四個等級,并繪制了如下不完整的扇形統(tǒng)計圖和條形統(tǒng)計圖.

根據(jù)以上信息,解答下列問題:

(1)本次評估隨機抽取了多少家商業(yè)連鎖店?

(2)請補充完整扇形統(tǒng)計圖和條形統(tǒng)計圖,并在圖中標注相應數(shù)據(jù);

(3)從、兩個等級的商業(yè)連鎖店中任選2家介紹營銷經(jīng)驗,求其中至少有一家是等級的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在某溫度不變的條件下,通過一次又一次地對氣缸頂部的活塞加壓,測出每一次加壓后氣缸內(nèi)氣體的體積與氣體對氣缸壁產(chǎn)生的壓強的關系可以用如圖所示的函數(shù)圖象進行表示,下列說法正確的是(

A.氣壓P與體積V的關系式為

B.當氣壓時,體積V的取值范圍為

C.當體積V變?yōu)樵瓉淼囊话霑r,對應的氣壓P也變?yōu)樵瓉淼囊话?/span>

D.時,氣壓P隨著體積V的增大而減小

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C為圓上(除A、B外)一動點,∠ACB的角平分線交⊙OD,若AC=8,BC=6,則BD的長為______.

查看答案和解析>>

同步練習冊答案