【題目】在平面直角坐標(biāo)系中,對(duì)于點(diǎn)Px,y)和Qx,y),給出如下定義:若y′=,則稱(chēng)點(diǎn)Q為點(diǎn)P親密點(diǎn).即:當(dāng)x≥0時(shí),點(diǎn)Px,y)的親密點(diǎn)Q的坐標(biāo)為(x,y+1);當(dāng)x<0時(shí),點(diǎn)Px,y)的親密點(diǎn)Q的坐標(biāo)為(x,-y).例如:點(diǎn)(1,2)的親密點(diǎn)為點(diǎn)(1,3),點(diǎn)(-1,3)的親密點(diǎn)為點(diǎn)(-1,-3).

(1)點(diǎn)(2,-3)的親密點(diǎn)______;______親密點(diǎn)是(-2,-5).

(2)點(diǎn)Mm+1,5)是一次函數(shù)y=x+3圖象上點(diǎn)N親密點(diǎn),求點(diǎn)N的坐標(biāo).

(3)若點(diǎn)P在函數(shù)y=x2-2x-3的圖象上.則其親密點(diǎn)Q的縱坐標(biāo)y關(guān)于x的函數(shù)圖象大致正確的是______.

(4)若點(diǎn)P在二次函數(shù)y=x2-2x-5的圖象上,當(dāng)-2<xa時(shí),其親密點(diǎn)Q的縱坐標(biāo)y滿足-5≤y′≤5,請(qǐng)直接寫(xiě)出a的取值范圍.

【答案】(1)(2,-2),(-2,5);(2)N1(1,4),N2(-2,-5);(3)B;(4)1≤a≤1+

【解析】

(1)根據(jù)親密點(diǎn)的定義即可求得;(2)分兩種情況進(jìn)行討論:當(dāng)m+1≥0時(shí),點(diǎn)M的縱坐標(biāo)為5,令5=y+1,則y=4,把y=4代入y=x+3求得x的值,即M(1,4);當(dāng)m+1<0時(shí),點(diǎn)M的縱坐標(biāo)為-5,代入y=x+3求得x的值,即M(-2,-5);(3)根據(jù)函數(shù)y=x2-2x-3的圖象,依據(jù)親密點(diǎn)的定義找出y′關(guān)于x的函數(shù)圖象,由此即可得出結(jié)論;(4)根據(jù)親密點(diǎn)的定義,可得函數(shù)解析式,根據(jù)自變量與函數(shù)值得對(duì)應(yīng)關(guān)系,可得答案.

(1)點(diǎn)(2,-3)的親密點(diǎn)為(2,-2),(-2,5)的親密點(diǎn)是(-2,-5).

故答案為(2,-2),(-2,5);

(2)N1(1,4),N2(-2,-5),

(3)由函數(shù)y=x2-2x-3=(x-3)(x+1)可知:拋物線開(kāi)口向上,與x軸有兩個(gè)交點(diǎn),交y軸與負(fù)半軸,所以將y軸左側(cè)的圖象關(guān)于x軸顛倒過(guò)來(lái),將y軸右側(cè)的圖象向上平移1個(gè)單位,即可得出y′關(guān)于x的函數(shù)圖象

故選B;

(4)由題意,得

y=x2-2x-5的圖象上的點(diǎn)P的親密點(diǎn)Q必在函數(shù)

y′=的圖象上,

當(dāng)x=-2時(shí),-x2+2x+5=5,

y′=-x2+2x+5>-5(x<0),

y′=-5y′=x2-2x-4(x≥0)上,y′=5y′=x2-2x-4(x≥0)上,

-5=x2-2x-4,

解得x=1,

5=x2-2x-4,

解得x=1+,x=1-(舍去),

1≤a≤1+

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1ABC中,AGBC于點(diǎn)G,以A為直角頂點(diǎn),分別以AB、AC為直角邊,向ABC作等腰RtABE和等腰RtACF,過(guò)點(diǎn)EF作射線GA的垂線,垂足分別為PQ

1)求證:EPA≌△AGB

2)試探究EPFQ之間的數(shù)量關(guān)系,并證明你的結(jié)論;

3)如圖2.若連接EFGA的延長(zhǎng)線于H,由(2)中的結(jié)論你能判斷EHFH的大小關(guān)系嗎?并說(shuō)明理由:

4)在(3)的條件下,若BC10AG12.請(qǐng)直接寫(xiě)出SAEF   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,AC,BD相交于點(diǎn)O,點(diǎn)EOA的中點(diǎn),連接BE并延長(zhǎng)交AD于點(diǎn)F,已知SAEF4,則下列結(jié)論:①=;②SBCE36;③SABE12;④△AEF∽△ACD,其中正確結(jié)論是_________.(把正確結(jié)論的序號(hào)都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某幢建筑物10m高的窗口A處用水管向外噴水,噴出的水成拋物線狀(拋物線所在平面與地面垂直).拋物線的最高點(diǎn)M離墻1m,離地面m.

(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求拋物線的解析式.

(2)求水的落地點(diǎn)B與點(diǎn)O的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,∠1∠2,則不一定能使△ABD≌△ACD的條件是 ( )

A. ABAC B. BDCD C. ∠B∠C D. ∠BDA∠CDA

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,是對(duì)角線上不同的兩點(diǎn),下列條件中,不能得出四邊形一定為平行四邊形的是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方形中,過(guò)點(diǎn)A引射線,交邊于點(diǎn)HH不與點(diǎn)D重合).通過(guò)翻折,使點(diǎn)B落在射線上的點(diǎn)G處,折痕E,連接EG并延長(zhǎng)F

1)如圖1,當(dāng)點(diǎn)H與點(diǎn)C重合時(shí),的大小關(guān)系是_____________________三角形.

2)如圖2,當(dāng)點(diǎn)H為邊上任意一點(diǎn)時(shí)(點(diǎn)H與點(diǎn)C不重合).連接,猜想的大小關(guān)系,并證明你的結(jié)論.

3)在圖2,當(dāng),時(shí),求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A,B,C都在拋物線y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,ABx軸,∠ABC=135°,且AB=4.

(1)填空:拋物線的頂點(diǎn)坐標(biāo)為 (用含m的代數(shù)式表示);

(2)求ABC的面積(用含a的代數(shù)式表示);

(3)若ABC的面積為2,當(dāng)2m﹣5≤x≤2m﹣2時(shí),y的最大值為2,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】新華商場(chǎng)銷(xiāo)售某種冰箱,每臺(tái)進(jìn)價(jià)為2500元,銷(xiāo)售價(jià)為2900元,平均每天能售出8臺(tái);調(diào)查發(fā)現(xiàn),當(dāng)銷(xiāo)售價(jià)每降低50元,平均每天就能多售出4臺(tái).商場(chǎng)要想使這種冰箱的銷(xiāo)售利潤(rùn)平均每天達(dá)到5000元,每臺(tái)冰箱應(yīng)該降價(jià)多少元?若設(shè)每臺(tái)冰箱降價(jià)x元,根據(jù)題意可列方程( 。

A. (2900-x)(8+4×)=5000 B. (400-x)(8+4×)=5000

C. 4(2900-x)(8+)=5000 D. 4(400-x)(8+)=5000

查看答案和解析>>

同步練習(xí)冊(cè)答案