已知正n邊形的周長為60,邊長為a.
(1)當n=3時,請直接寫出a的值;
(2)把正n邊形的周長和邊數(shù)同時增加8后,得到邊數(shù)為n+8,周長為68的正多邊形,設(shè)該正多邊形的邊長為b,有人分別取n等于9、20、30,再求出相應(yīng)的a與b的值,然后斷言:“無論n取任何大于2的正整數(shù),a與b一定不相等.”你認為這種說法對嗎?若不對,請利用所學知識求出不符合這一說法的n的值.

解:(1)a=20.

(2)這種說法不對.
∵正n邊形的周長為60,邊長為a,正n邊形的周長和邊數(shù)同時增加8后,得到邊數(shù)為n+8,周長為68的正多邊形,設(shè)該正多邊形的邊長為b,
∴根據(jù)題意,得,
解得n=60.
經(jīng)檢驗,n=60是所列方程的解.
所以,當n=60時,a與b的值相等.
分析:(1)因為正n邊形的周長為60,很容易求出邊長a.
(2)已知正n邊形,以邊長做為等量關(guān)系,即假設(shè)它們相等列出方程看看能不能求出值即可.
點評:本題考查分式方程的應(yīng)用,關(guān)鍵是以邊長做為等量關(guān)系列方程求解,以及考查了正多邊形的知識點.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

已知正n邊形的周長為60,邊長為a.
(1)當n=3時,請直接寫出a的值;
(2)把正n邊形的周長和邊數(shù)同時增加8后,得到邊數(shù)為n+8,周長為68的正多邊形,設(shè)該正多邊形的邊長為b,有人分別取n等于9、20、30,再求出相應(yīng)的a與b的值,然后斷言:“無論n取任何大于2的正整數(shù),a與b一定不相等.”你認為這種說法對嗎?若不對,請利用所學知識求出不符合這一說法的n的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知正n邊形的周長為60,邊長為a
(1)當n=3時,請直接寫出a的值;
(2)把正n邊形的周長與邊數(shù)同時增加7后,假設(shè)得到的仍是正多邊形,它的邊數(shù)為n+7,周長為67,邊長為b.有人分別取n等于3,20,120,再求出相應(yīng)的a與b,然后斷言:“無論n取任何大于2的正整數(shù),a與b一定不相等.”你認為這種說法對嗎?若不對,請求出不符合這一說法的n的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知正n邊形的周長為60,邊長為a.
(1)當n=3時,請直接寫出a的值;
(2)把正n邊形的周長與邊數(shù)同時增加7后,假設(shè)得到的仍是正多邊形,它的邊數(shù)為n+7,周長為67,邊長為b.當a=b時,求n的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知正n邊形的周長為60,邊長為a
(1)當n=3時,請直接寫出a的值;
(2)把正n邊形的周長與邊數(shù)同時增加7后,假設(shè)得到的仍是正多邊形,它的邊數(shù)為n+7,周長為67,邊長為b.有人分別取n等于3,20,120,再求出相應(yīng)的a與b,然后斷言:“無論n取任何大于2的正整數(shù),a與b一定不相等.”你認為這種說法對嗎?若不對,請求出不符合這一說法的n的值.

查看答案和解析>>

科目:初中數(shù)學 來源:福建省中考真題 題型:解答題

已知正n邊形的周長為60,邊長為a。
⑴當n=3時,請直接寫出a的值;
⑵把正n邊形的周長與邊數(shù)同時增加7后,假設(shè)得到的仍是正多邊形,它的邊數(shù)為n+7,周長為67,邊長為b。有人分別取n等于3、20、120,再求出相應(yīng)的a與b,然后斷言:“無論n取任何大于2的正整數(shù),a與b一定不相等!蹦阏J為這種說法對嗎?若不對,請求出不符合這一說法的n的值。

查看答案和解析>>

同步練習冊答案