如圖,在邊長為1的正方形組成的網(wǎng)格中,△AOB的頂點均在格點上,點A,B的坐標(biāo)分別是A(3,3)、B(1,2),△AOB繞點O逆時針旋轉(zhuǎn)90°后得到△.
(1)畫出△,直接寫出點,的坐標(biāo);
(2)在旋轉(zhuǎn)過程中,點B經(jīng)過的路徑的長;
(3)求在旋轉(zhuǎn)過程中,線段AB所掃過的面積.
(1)作圖見解析,A1(-3,3),B1(-2,1);(2)(3)

試題分析:(1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點A、B繞點O逆時針旋轉(zhuǎn)90°后的對應(yīng)點A1、B1的位置,然后順次連接即可,再根據(jù)平面直角坐標(biāo)系寫出各點的坐標(biāo);
(2)利用勾股定理列式求出OB的長,再利用弧長公式列式計算即可得解;
(3)根據(jù)AB掃過的面積等于以O(shè)A、OB為半徑的兩個扇形的面積的差列式計算即可得解.
(1)△A1OB1如圖所示,A1(-3,3),B1(-2,1);

(2)由勾股定理得,OB=
所以,弧BB1=;
(3)由勾股定理得,OA=,
S扇形OAA1=,
S扇形OBB1=
則線段AB所掃過的面積為:
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在⊙O中,AB為直徑,點C為圓上一點,將劣弧沿弦AC翻折交AB于點D,連結(jié)CD.如圖,若點D與圓心O重合,AC=2,求⊙O的半徑r;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,兩圓圓心相同,大圓的弦AB與小圓相切,AB=8,則圖中陰影部分的面積是__________.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABO中,OA=OB,C是邊AB的中點,以O(shè)為圓心的圓過點C.
(1)求證:AB與⊙O相切;
(2)若∠AOB=120°,AB=,求⊙O的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB為⊙O的直徑,C為⊙O上一點,AD和過C點的直線互相垂直,垂足為D,且AC平分∠DAB.
(1)求證:DC為⊙O的切線;
(2)若⊙O的半徑為3,AD="4" ,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,以等邊三角形ABC的BC邊為直徑畫半圓,分別交AB、AC于點E、D,DF是圓的切線,過點F作BC的垂線交BC于點G.若AF的長為2,則FG的長為

A.4          B.6             C.            D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

點O1、O2在直線l上,⊙O1的半徑為2cm,⊙O2的半徑為3cm,4cm<O1O2<8cm.⊙O1與⊙O2
不可能出現(xiàn)的位置關(guān)系是( )
A.外離 B.外切C.相交D.內(nèi)切

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,在直角梯形ABCD中,AD∥BC,∠A=90°,BD⊥DC,BC=10cm,CD=6cm.在線段BC、CD上有動點F、E,點F以每秒2cm的速度,在線段BC上從點B向點C勻速運動;同時點E以每秒1cm的速度,在線段CD上從點C向點D勻速運動.當(dāng)點F到達(dá)點C時,點E同時停止運動.設(shè)點F運動的時間為t(秒).
(1)求AD的長;
(2)設(shè)四邊形BFED的面積為y,求y 關(guān)于t的函數(shù)關(guān)系式并寫出自變量的取值范圍
(3)當(dāng)t為何的值時,以EE為半徑的⊙F與CD邊只有一個公共點.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

一幾何體的三視圖如圖所示,其中正視圖與左視圖是兩個全等的等腰三角形,俯視圖是圓,則該幾何體的側(cè)面積為   

查看答案和解析>>

同步練習(xí)冊答案