【題目】某商店如果將進貨價為8元的商品按每件10元售出,每天可銷售200件,現(xiàn)在采用提高售價,減少進貨量的方法增加利潤,已知這種商品每漲價0.5元,其銷量就減少10件.
(1)要使每天獲得利潤700元,請你幫忙確定售價;
(2)問售價定在多少時能使每天獲得的利潤最多?并求出最大利潤.
【答案】(1)13元或15元(2)14元,最大利潤為720元
【解析】
試題分析:(1)如果設(shè)每件商品提高x元,可先用x表示出單件的利潤以及每天的銷售量,然后根據(jù)總利潤=單價利潤×銷售量列出關(guān)于x的方程,進而求出未知數(shù)的值.
(2)首先設(shè)應(yīng)將售價提為x元時,才能使得所賺的利潤最大為y元,根據(jù)題意可得:y=(x﹣8)(200﹣ ×10),然后化簡配方,即可求得答案.
試題解析:(1)設(shè)每件商品提高x元,
則每件利潤為(10+x﹣8)=(x+2)元,
每天銷售量為(200﹣20x)件,
依題意,得:
(x+2)(200﹣20x)=700.
整理得:x2﹣8x+15=0.
解得:x1=3,x2=5.
∴把售價定為每件13元或15元能使每天利潤達到700元;
答:把售價定為每件13元或15元能使每天利潤達到700元.
(2)設(shè)應(yīng)將售價定為x元時,才能使得所賺的利潤最大為y元,
根據(jù)題意得:
y=(x﹣8)(200﹣×10),
=﹣20x2+560x﹣3200,
=﹣20(x2﹣28x)﹣3200,
=﹣20(x2﹣28x+142)﹣3200+20×142
=﹣20(x﹣14)2+720,
∴x=14時,利潤最大y=720.
答:應(yīng)將售價定為14元時,才能使所賺利潤最大,最大利潤為720元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“馬航事件”的發(fā)生引起了我國政府的高度重視,我國政府迅速派出了艦船和飛機到相關(guān)海域進行搜尋.如圖,在一次空中搜尋中,水平飛行的飛機在點A處測得前方海面的點F處有疑似飛機殘骸的物體(該物體視為靜止),此時的俯角為30°.為了便于觀察,飛機繼續(xù)向前飛行了800m到達B點,此時測得點F的俯角為45°.請你計算當(dāng)飛機飛臨F點的正上方點C時(點A,B,C在同一直線上),豎直高度CF約為多少米?(結(jié)果保留整數(shù).參考數(shù)據(jù):≈1.7)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某一出租車一天下午以鼓樓為出發(fā)地在東西方向營運,向東為正,向西為負,行車里程(單位:)依先后次序記錄如下:+9、-4、-5、+4、-8、+6、-3、-7、-4、+10.
(1)將最后一名乘客送到目的地,出租車離鼓樓出發(fā)點多遠?在鼓樓的什么方向?
(2)若每千米的價格為2.4元,司機一個下午的營業(yè)額是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,有一組有規(guī)律的點:
A1(0,1)、A2(1,0)、A3(2,1)、A4(3,0)、A5(4,1)….依此規(guī)律可知,當(dāng)n為奇數(shù)時,有點An (n-1,1),當(dāng)n為偶數(shù)時,有點An(n-1,0).
拋物線C1經(jīng)過A1,A2,A3三點,拋物線C2經(jīng)過A2,A3,A4三點,拋物線C3經(jīng)過A3,A4,A5三點,…拋物線Cn經(jīng)過An,An+1,An+2.
(1)直接寫出拋物線C1,C4的解析式;
(2)若點E(e,f1)、F(e,f2)分別在拋物線C27、C28上,當(dāng)e=29時,求證:△A26EF是等腰直角三角形;
(3)若直線x=m分別交x軸、拋物線C2014、C2015于點P、M、N,作直線A2015 M、A2015 N,當(dāng)∠A2015 NM=90°時,求sin∠A2015 MN的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1交x軸于A(3,0),交y軸于B(0,﹣2)
(1)求直線l1的表達式;
(2)將l1向上平移到C(0,3),得到直線l2,寫出l2的表達式;
(3)過點A作直線l3⊥x軸,交l2于點D,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將兩張完全相同的矩形紙片ABCD、FBED按如圖方式放置,BD為重合的對角線.重疊部分為四邊形DHBG.
(1)試判斷四邊形DHBG為何種特殊的四邊形,并說明理由;
(2)若AB=8,AD=4,求四邊形DHBG的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一條直線的流水線上依次有5個機器人,它們站立的位置在數(shù)軸上依次用點A、B、C、D、E表示
(1)點B與點E之間的距離是多少?
(2)怎樣移動點C,使它先到達點B,再到達點E?用文字說明
(3)若原點是零件供應(yīng)點,則5個機器人分別到達供應(yīng)點的路程之和是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明學(xué)習(xí)電學(xué)知識后,用四個開關(guān)按鍵(每個開關(guān)鍵閉合的可能性相等)、一個電源和一個燈泡設(shè)計了一個電路圖
(1)若小明設(shè)計的電路圖(四個開關(guān)按鍵都處于打開狀態(tài))如圖所示,求任意閉合一個開關(guān)按鍵,燈泡能發(fā)光的概率;
(2)若小明設(shè)計的電路圖(四個開關(guān)按鍵都處于打開狀態(tài))如圖所示,求同時閉合其中的兩個開關(guān)按鍵,燈泡能發(fā)光的概率.(用列表或樹狀圖法)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AM是中線,D是AM所在直線上的一個動點(不與點A重合),DE∥AB交AC所在直線于點F,CE∥AM,連接BD,AE.
(1)如圖1,當(dāng)點D與點M重合時,觀察發(fā)現(xiàn):△ABM向右平移BC到了△EDC的位置,此時四邊形ABDE是平行四邊形.請你給予驗證;
(2)如圖2,圖3,圖4,是當(dāng)點D不與點M重合時的三種情況,你認為△ABM應(yīng)該平移到什么位置?直接在圖中畫出來.此時四邊形ABDE還是平行四邊形嗎?請你選擇其中一種情況說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com