【題目】如圖,直線l1交x軸于A(3,0),交y軸于B(0,﹣2)
(1)求直線l1的表達式;
(2)將l1向上平移到C(0,3),得到直線l2,寫出l2的表達式;
(3)過點A作直線l3⊥x軸,交l2于點D,求四邊形ABCD的面積.
【答案】(1)直線l1的表達式為:y=x﹣2;(2)直線l2的表達式為:y=x+3;(3)四邊形ABCD的面積=15.
【解析】
(1)利用待定系數(shù)法求直線l1 的表達式
(2)根據(jù)一次函數(shù)沿著y軸向上平移的規(guī)律求解
(3)根據(jù)題意可知四邊形為平行四邊形,又各點的坐標,可直接求解
(1)設(shè)直線l1的表達式為:y=kx+b,
由題意可得: ,
解得: ,
所以,直線l1的表達式為:y= x﹣2;
(2)將l1向上平移到C(0,3)可知,向上平移了5個單位長度,由幾何變換可得:直線l2的表達式為:y= x﹣2+5=x+3;
(3)根據(jù)題意可知AB∥CD,CB∥DA,可得四邊形ABCD為平行四邊形
∵已知B(0,﹣2)C(0,3)A(3,0)
∴BC=5,OA=3,
∴四邊形ABCD的面積=5×3=15.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠C=90°,AC=6,BC=8,動點P從點A開始沿邊AC向點C以1個單位長度的速度運動,動點Q從點C開始沿邊CB向點B以每秒2個單位長度的速度運動,過點P作PD∥BC,交AB于點D,連接PQ分別從點A、C同時出發(fā),當其中一點到達端點時,另一點也隨之停止運動,設(shè)運動時間為t秒(t≥0).
(1)直接用含t的代數(shù)式分別表示:QB= ,PD= .
(2)是否存在t的值,使四邊形PDBQ為菱形?若存在,求出t的值;若不存在,說明理由.并探究如何改變Q的速度(勻速運動),使四邊形PDBQ在某一時刻為菱形,求點Q的速度;
(3)如圖2,在整個運動過程中,求出線段PQ中點M所經(jīng)過的路徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一組數(shù)28、29.4、31.9、27、28.8、34.1、29.4的中位數(shù)、眾數(shù)、極差分別是( 。
A. 、、B. 、、
C. 27、29、D. 、28、
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】蝸牛從某點O開始沿東西方向直線爬行,規(guī)定向東爬行的路程記為正數(shù),向西爬行的路程記為負數(shù).爬行的各段路程依次為(單位:厘米):.問:
(1)蝸牛最后是否回到出發(fā)點O?
(2)蝸牛離開出發(fā)點O最遠是多少厘米?
(3)在爬行過程中,如果每爬行1厘米獎勵一粒芝麻,則蝸?傻玫蕉嗌倭Vヂ?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一塊直角三角形木板的一條直角邊AB長為1.5m,面積為1.5m2,工人師傅要把它加工成一個面積最大的正方形桌面,請甲、乙兩位同學(xué)進行設(shè)計加工方案,甲設(shè)計方案如圖1,乙設(shè)計方案如圖2.你認為哪位同學(xué)設(shè)計的方案較好?試說明理由.(加工損耗忽略不計,計算結(jié)果中可保留分數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店如果將進貨價為8元的商品按每件10元售出,每天可銷售200件,現(xiàn)在采用提高售價,減少進貨量的方法增加利潤,已知這種商品每漲價0.5元,其銷量就減少10件.
(1)要使每天獲得利潤700元,請你幫忙確定售價;
(2)問售價定在多少時能使每天獲得的利潤最多?并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的長方體,已知它的長為4cm,寬為3cm,高為5cm
(1)求此長方體所有棱長的和;
(2)若它是一個無上蓋的精致包裝盒,制作這種包裝盒的紙每平方厘米是0.1元,問制作10個這樣的包裝盒共需多少元?(不考慮接縫之間的材料)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC的坐標分別為A(﹣3,5),B(﹣4,2),C(﹣1,4)(注:每個方格的邊長均為1個單位長度).
(1)將△ABC沿著水平方向向右平移6個單位得△A1B1C1,請畫出△A1B1C1;
(2)作出將△ABC關(guān)于O點成中心對稱的△A2B2C2,并直接寫出的坐標;
(3)△A1B1C1與△A2B2C2是否成中心對稱?若是,請寫出對稱中心的坐標;若不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com