【題目】拋物線y=ax2+bx+c(a≠0)形狀如圖,下列結(jié)論:①b>0;②a﹣b+c=0;③當(dāng)x<﹣1或x>3時(shí),y>0;④一元二次方程ax2+bx+c+1=0(a≠0)有兩個(gè)不相等的實(shí)數(shù)根.正確的有( )
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)
【答案】B
【解析】
根據(jù)拋物線的開(kāi)口方向、對(duì)稱軸、頂點(diǎn)坐標(biāo)和增減性,以及二次函數(shù)與一元二次方程的關(guān)系逐個(gè)進(jìn)行判斷即可.
解:由拋物線開(kāi)口向上,可知a>0,對(duì)稱軸偏在y軸的右側(cè),a、b異號(hào),b<0,因此①不符合題意;
由對(duì)稱軸為x=1,拋物線與x軸的一個(gè)交點(diǎn)為(3,0),可知與x軸另一個(gè)交點(diǎn)為(﹣1,0),代入得a﹣b+c=0,因此②符合題意;
由圖象可知,當(dāng)x<﹣1或x>3時(shí),圖象位于x軸的上方,即y>0.因此③符合題意;
拋物線與y=﹣1一定有兩個(gè)交點(diǎn),即一元二次方程ax2+bx+c+1=0(a≠0)有兩個(gè)不相等的實(shí)數(shù)根,因此④符合題意;
綜上,正確的有3個(gè),
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線與x軸交于A、D兩點(diǎn),與y軸交于點(diǎn)B,四邊形OBCD是矩形,點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)B的坐標(biāo)為(0,4),已知點(diǎn)E(m,0)是線段DO上的動(dòng)點(diǎn),過(guò)點(diǎn)E作PE⊥x軸交拋物線于點(diǎn)P,交BC于點(diǎn)G,交BD于點(diǎn)H.
(1)求該拋物線的解析式;
(2)當(dāng)點(diǎn)P在直線BC上方時(shí),請(qǐng)用含m的代數(shù)式表示PG的長(zhǎng)度;
(3)在(2)的條件下,是否存在這樣的點(diǎn)P,使得以P、B、G為頂點(diǎn)的三角形與△DEH相似?若存在,求出此時(shí)m的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】AE為⊙O的直徑,D為的中點(diǎn),過(guò)E點(diǎn)的切線交AD的延長(zhǎng)線于F.
(1)求證:∠AEB=2∠F;
(2)若AD=2,DF=4,求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知一次函數(shù)y1=ax+b的圖象與x軸、y軸分別交于點(diǎn)D、C,與反比例函數(shù)y2=的圖象交于A、B兩點(diǎn),且點(diǎn)A的坐標(biāo)是(1,3)、點(diǎn)B的坐標(biāo)是(3,m).
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求C、D兩點(diǎn)的坐標(biāo),并求△AOB的面積;
(3)根據(jù)圖象直接寫出:當(dāng)x在什么取值范圍時(shí),y1>y2?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,C地在B地的正東方向,因有大山阻隔,由B地到C地需繞行A地,已知A地位于B地北偏東53°方向,距離B地516千米,C地位于A地南偏東45°方向.現(xiàn)打算打通穿山隧道,建成兩地直達(dá)高鐵,求建成高鐵后從B地前往C地的路程.(結(jié)果精確到1千米)(參考數(shù)據(jù):sin53°=,cos53°=,tan53°=)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=﹣x+m與拋物線y=ax2+bx都經(jīng)過(guò)點(diǎn)A(6,0),點(diǎn)B,過(guò)B作BH垂直x軸于H,OA=3OH.直線OC與拋物線AB段交于點(diǎn)C.
(1)求拋物線的解析式;
(2)當(dāng)點(diǎn)C的縱坐標(biāo)是時(shí),求直線OC與直線AB的交點(diǎn)D的坐標(biāo);
(3)在(2)的條件下將△OBH沿BA方向平移到△MPN,頂點(diǎn)P始終在線段AB上,求△MPN與△OAC公共部分面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,AB為⊙O的直徑,C為⊙O上一點(diǎn),連接CB,過(guò)C作CD⊥AB于點(diǎn)D,過(guò)點(diǎn)C作∠BCE,使∠BCE=∠BCD,其中CE交AB的延長(zhǎng)線于點(diǎn)E.
(1)求證:CE是⊙O的切線.
(2)如圖2,點(diǎn)F在⊙O上,且滿足∠FCE=2∠ABC,連接AF井延長(zhǎng)交EC的延長(zhǎng)線于點(diǎn)G.
①試探究線段CF與CD之間滿足的數(shù)量關(guān)系;
②若CD=4,BD=2,求線段FG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,E為OC上動(dòng)點(diǎn)(與點(diǎn)O不重合),作AF⊥BE,垂足為G,交BC于F,交B0于H,連接OG,CC.
(1)求證:AH=BE;
(2)試探究:∠AGO的度數(shù)是否為定值?請(qǐng)說(shuō)明理由;
(3)若OG⊥CG,BG=,求△OGC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖在正方形網(wǎng)格中,小正方形的邊長(zhǎng)均為1,三角形的頂點(diǎn)都在格點(diǎn)上,則與△ABC相似的三角形所在的網(wǎng)格圖形是( 。
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com