【題目】如圖,一艘輪船航行到B處時,測得小島A在船的北偏東60°的方向上,輪船從B處繼續(xù)向正東方向航行100海里到達(dá)C處時,測得小島A在船的北偏東30°的方向上,AD⊥BC于點(diǎn)D,求AD的長.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為評估九年級學(xué)生的學(xué)習(xí)成績狀況,以應(yīng)對即將到來的中考做好教學(xué)調(diào)整,某中學(xué)抽取了部分參加考試的學(xué)生的成績作為樣本分析,繪制成了如下兩幅不完整的統(tǒng)計(jì)圖,請根據(jù)圖中提供的信息解答下列問題:
(1)求本中學(xué)成績類別為“中”的人數(shù);
(2)求出扇形圖中,“優(yōu)”所占的百分比,并將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)該校九年級共有1000人參加了這次考試,請估算該校九年級共有多少名學(xué)生的數(shù)學(xué)成績達(dá)到優(yōu)秀?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,點(diǎn)E,F(xiàn)分別在AB,CD上,AE=CF,連接AF,BF,DE,CE,分別交于H,G.求證:
(1)EF與GH互相平分;
(2)在不添加任何輔助線和字母的條件下,請直接寫出圖中所有的全等的三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=8,BC=6,P為AD上一點(diǎn),將△ABP沿BP翻折至△EBP,PE與CD相交于點(diǎn)O,BE與CD相交于點(diǎn)G,且OE=OD,則AP的長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是一個長為2m、寬為2n的長方形,沿圖中虛線用剪刀均分成四塊小長方形,然后按圖2的形狀拼成一個正方形.
(1)請用兩種不同的方法求圖2中陰影部分的面積.
方法1: ;
方法2: ;
(2)觀察圖2請你寫出下列三個代數(shù)式:(m+n)2,(m-n)2,mn之間的等量關(guān)系 ;
(3)根據(jù)(2)題中的等量關(guān)系,解決如下問題:
①已知:,,求:的值;
②已知:,,求:的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把代數(shù)式通過配湊等手段,得到局部完全平方式,再進(jìn)行有關(guān)運(yùn)算和解題,這種解題方法叫做配方法.
如:①用配方法分解因式:a2+6a+8,
解:原式=a2+6a+8+1-1=a2+6a+9-1
=(a+3)2-12=
②M=a2-2a-1,利用配方法求M的最小值.
解:
∵(a-b)2≥0,∴當(dāng)a=1時,M有最小值-2.
請根據(jù)上述材料解決下列問題:
(1)用配方法因式分解:.
(2)若,求M的最小值.
(3)已知x2+2y2+z2-2xy-2y-4z+5=0,求x+y+z的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司員工分別在A、B、C三個住宅區(qū),A區(qū)有30人,B區(qū)有15人,C區(qū)有10人,三個區(qū)在一條直線上,位置如圖所示,該公司的接送車打算在此間只設(shè)一個?奎c(diǎn),為使所有員工步行到?奎c(diǎn)的路程之和最小,那么?奎c(diǎn)的位置應(yīng)設(shè)在( )
A.A區(qū)B.B區(qū)C.C區(qū)D.A.B兩區(qū)之間
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,對角線AC=6,BD=8,點(diǎn)E、F分別是邊AB、BC的中點(diǎn),點(diǎn)P在AC上運(yùn)動,在運(yùn)動過程中,存在PE+PF的最小值,則這個最小值是________________
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com