【題目】如圖,△ABC中,點E、P在邊AB上,且AE=BP,過點EPBC的平行線,分別交AC于點FQ.記△AEF的面積為,四邊形EFQP的面積為,四邊形PQCB的面積為

1)求證:EFPQ=BC

2)若=,求的值

3)若=,直接寫出的值

【答案】見解析;2;

【解析】

試題過點QQD∥PB,從而得到四邊形PQDB為平行四邊形,根據(jù)平行四邊形性質得到PQ=BD,PB=QD∠B=∠QDC,然后再證明△AEF△QDC全等,從而得出答案;過點AAH⊥BCH,分別交EFPQM、N,設EF=a,PQ=bAM=h,則BC=a+b,根據(jù)三角形相似得出,從而求出ANMN的長度,然后分別求出、的代數(shù)式,然后根據(jù)三者之間的關系求出ab的關系,然后得出答案;根據(jù)(2)的同樣方法得出答案.

試題解析:(1)如圖所示,過點QQD∥PB

∵PQ∥BCQD∥BP ∴四邊形PQDB為平行四邊形 ∴PQ=BD,PB=QD ∠B=∠QDC

∵AE=BP ∴AE=QD ∵EF∥BC ∴∠AFE=∠C ∠AEF=∠B ∴∠AEF=∠QDC

∴△AEF≌△QDC ∴EF=CD ∴BC=BD+CD=PQ+EF

2)如圖,過點AAH⊥BCH,分別交EF、PQM、N,

EF=aPQ=b,AM=h,則BC=a+b ∵∴AN=h MN=1h

則:=ah=a+b)(1h=b+a+bh

+=ah+b+a+bh=a+b)(1h ∴b=3a ∴=2

3

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】邊長為6的等邊ABC中,點DE分別在AC、BC邊上,DEAB,EC=2

1)如圖1,將DEC沿射線EC方向平移,得到D′E′C′,邊D′E′AC的交點為M,邊C′D′與∠ACC′的角平分線交于點N,當CC′多大時,四邊形MCND′為菱形?并說明理由.

2)如圖2,將DEC繞點C旋轉∠αα360°),得到D′E′C,連接AD′、BE′.邊D′E′的中點為P

①在旋轉過程中,AD′BE′有怎樣的數(shù)量關系?并說明理由;

②連接AP,當AP最大時,求AD′的值.(結果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線x軸相交于A3,0)、B兩點,與y軸交于點C0,3),點Bx軸的負半軸上,且.

1)求拋物線的函數(shù)關系式;

2)若P是拋物線上且位于直線上方的一動點,求的面積的最大值及此時點P的坐標;

3)在線段上是否存在一點M,使的值最小?若存在,請求出這個最小值及對應的M點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2018年非洲豬瘟疫情暴發(fā)后,今年豬肉價格不斷走高,引起了民眾與政府的高度關注,據(jù)統(tǒng)計:今年720日豬肉價格比今年年初上漲了60%,某市民今年720日在某超市購買1千克豬肉花了80元錢.

1)問:今年年初豬肉的價格為每千克多少元?

2)某超市將進貨價為每千克65元的豬肉,按720日價格出售,平均一天能銷售出100千克,經(jīng)調(diào)查表明:豬肉的售價每千克下降1元,其日銷售量就增加10千克,超市為了實現(xiàn)銷售豬內(nèi)每天有1560元的利潤,并且可能讓顧客得到實惠,豬肉的售價應該下降多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊△ABC內(nèi)有一點D,AD=5BD=6,CD=4,將△ABD繞點A逆時針旋轉,使ABAC重合,點D旋轉到點E,則∠CDE的正切值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,點Ay軸上,∠OAB30°B2,0),OCAB于點C,點C在反比例函數(shù)yk≠0)的圖象上.

1)求該反比例函數(shù)解析式;

2)若點D為反比例函數(shù)yk≠0)在第一象限的圖象上一點,且∠DOC30°,求點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,MBC上一點,FAM的中點,EF⊥AM,垂足為F,交AD的延長線于點E,交DC于點N

1)求證:△ABM∽△EFA;

2)若AB=12,BM=5,求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①所示,已知正方形ABCD和正方形AEFG,連接DG,BE

1)發(fā)現(xiàn):當正方形AEFG繞點A旋轉,如圖②所示.

①線段DGBE之間的數(shù)量關系是   

②直線DG與直線BE之間的位置關系是   ;

2)探究:如圖③所示,若四邊形ABCD與四邊形AEFG都為矩形,且AD2ABAG2AE時,上述結論是否成立,并說明理由.

3)應用:在(2)的情況下,連接BG、DE,若AE1AB2,求BG2+DE2的值(直接寫出結果).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,點A在第一象限,軸于B點,連結,將折疊,使點落在x軸上,折痕交邊于D點,交斜邊E點,(1)若A點的坐標為,當時,點的坐標是______;(2)若與原點O重合,,雙曲線的圖象恰好經(jīng)過D,E兩點(如圖2),則____

查看答案和解析>>

同步練習冊答案