【題目】⊙O的半徑為5cm,AB,CD是⊙O的兩條弦,ABCD,AB=8,CD=6,AB和CD之間的距離是___________________.

【答案】1cm或7cm

【解析】解:當弦ABCD在圓心同側(cè)時,如圖,過點OOFCD,垂足為F,交AB于點E,連接OA,OC,ABCD,OEAB,AB=8cmCD=6cm,AE=4cm,CF=3cmOA=OC=5cm,EO=3cm,OF=4cm,EF=OFOE=1cm

當弦ABCD在圓心異側(cè)時,如圖,過點OOEAB于點E,反向延長OEAD于點F,連接OA,OC,ABCDOFCD,AB=8cm,CD=6cm,AE=4cm,CF=3cm,OA=OC=5cmEO=3cm,OF=4cmEF=OF+OE=7cm

故答案為:1cm7cm

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖ABC,B90°AB4,BC2AC為邊作△ACE,ACE90°,AC=CE,延長BC至點D,使CD5,連接DE.求證ABC∽△CED

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,三角形ABC(記作△ABC)在方格中,方格紙中每個小方格都是邊長為1個單位的正方形,三個頂點的坐標分別是A(﹣2,1),B(﹣3,﹣2),C1,﹣2),先將△ABC向上平移3個單位長度,再向右平移2個單位長度,得到A1B1C1

1)在圖中畫出△A1B1C1

2)點A1,B1,C1的坐標分別為   、      ;

3)若直線BC上有一點P,使△PAC的面積是△ABC面積的2倍,直接寫出P點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如下幾個圖形是五角星和它的變形.

(1)圖甲是一個五角星 ABCDE,則∠A+∠B+∠C+∠D+∠E 的度數(shù)為 ;(不必 寫過程)

(2)如圖乙,如果點 B 向右移動到 AC 上時,則∠A+∠EBD+∠C+∠D+∠E 度數(shù)為 ;(不必寫過程)

(3)如圖丙,點 B 向右移動到 AC 的另一側(cè)時,(1)的結(jié)論成立嗎?為什么?

(4)如圖丁,點 B,E 移動到∠CAD 的內(nèi)部時,結(jié)論又如何?(不必寫過程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖AOBD相交于點O,ECD上一點,FOD上一點,EFOC,∠1=∠A

1)試判斷ABCD的位置關系,并說明理由;

2)若∠B=50°,∠1=65°,求∠DOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知⊙O的直徑為10,點A,點B,點C在⊙O上,∠CAB的平分線交⊙O于點D.

(1)如圖①,若BC為⊙O的直徑,AB=6,求AC,BD,CD的長;

(2)如圖②,若∠CAB=60°,求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下圖表示一次函數(shù)y=mx+n與正比例函數(shù)y=mnxm,n是常數(shù),且mn0)的大致圖像是(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線x軸、y軸分別交于點A,B,點C是線段AB上一點,四邊形OADC是菱形,求OD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的對角線交點為O,正方形OEFG的邊長與正方形ABCD的邊長相等,若將正方形OEFG繞點O旋轉(zhuǎn),試說明旋轉(zhuǎn)到如圖的位置時,兩正方形重疊部分的面積與正方形面積之間的關系.

查看答案和解析>>

同步練習冊答案