【題目】如圖,在△ABC中,BDAC于點(diǎn)D,CEAB于點(diǎn)E,BDCE相交于點(diǎn)O,且BD=CE,連接AO

1)求證:△BOC是等腰三角形;

2)求證:AO平分∠BAC

【答案】1)見解析 (2)見解析

【解析】

(1)根據(jù)BDAC于點(diǎn)D,CEAB于點(diǎn)E,利用HL定理得到RtBDCRtCEB,進(jìn)一步得出∠DBC=∠ECB,由等角對(duì)等邊得到OB=OC,即可解答;

2)根據(jù)角平分線的判定定理,只需證明OD=OE即可.

證明:(1)∵BDAC于點(diǎn)D,CEAB于點(diǎn)E,

∴∠BDC=∠CEB=90°,

RtBDCRtCEB,

RtBDCRtCEBHL),

∴∠DBC=∠ECB

OB=OC,

BOC是等腰三角形;

2)∵BD=CE,OB=OC,

BDOB=CEOC,

OD=OE,

BDAC,CEAB,

AO平分∠BAC

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,斜坡AP的坡度為1:24,坡長AP為26米,在坡頂A處的同一水平面上有一座古塔BC,在斜坡底P處測(cè)得該塔的塔頂B的仰角為45°,在坡頂A處測(cè)得該塔的塔頂B的仰角為76°求:

1坡頂A到地面PQ的距離;

2古塔BC的高度結(jié)果精確到1米).(參考數(shù)據(jù):sin76°≈097,cos76°≈024,tan76°≈401

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:已知等邊ABC中,DAC的中點(diǎn),EBC延長線上的一點(diǎn),且CE=CD,DMBC,垂足為M.

(1)求∠E的度數(shù).

(2)求證:MBE的中點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】端午節(jié)”是我國流傳了上千年的傳統(tǒng)節(jié),全國各地舉行了豐富多彩的紀(jì)念活動(dòng),為了繼承傳統(tǒng),減緩學(xué)生考前的心理壓力,某班學(xué)生組織了一次拔河比賽,裁判員讓兩隊(duì)隊(duì)長用“石頭、剪刀、布”的手勢(shì)方式選擇場(chǎng)地位置,規(guī)則:石頭勝剪刀,剪刀勝布,布勝石頭,手勢(shì)相同則再?zèng)Q勝負(fù).

(1)用列表或畫樹狀圖法,列出甲、乙兩隊(duì)手勢(shì)可能出現(xiàn)的情況;

(2)裁判員的這種做法對(duì)甲、乙雙方公平嗎?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ABAC,點(diǎn)D、E、F分別在AB、BC、AC BECF,AD+ECAB

1)求證:DEF是等腰三角形;

2)當(dāng)∠A40°時(shí),求∠DEF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一個(gè)計(jì)算器,計(jì)算時(shí)只能顯示1.41421356237十三位(包括小數(shù)點(diǎn)),現(xiàn)在想知道7后面的數(shù)字是什么,可以在這個(gè)計(jì)算器中計(jì)算下面哪一個(gè)值(

A. 10 B. 10-1 C. 100 D. -1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某自行車制造廠開發(fā)了一款新式自行車,計(jì)劃月份生產(chǎn)安裝輛,由于抽調(diào)不出足夠的熟練工來完成新式自行車的安裝,工廠決定招聘一些新工人;他們經(jīng)過培訓(xùn)后也能獨(dú)立進(jìn)行安裝.調(diào)研部門發(fā)現(xiàn): 名熟練工和名新工人每日可安裝輛自行車; 名熟練工和名新工人每日可安裝輛自行車。

(1)每名熟練工和新工人每日分別可以安裝多少輛自行車?

(2)如果工廠招聘名新工人().使得招聘的新工人和抽調(diào)熟練工剛好能完成月份()的安裝任務(wù),那么工廠有哪幾種新工人的招聘方案?

(3)該自行車關(guān)于輪胎的使用有以下說明:本輪胎如安裝在前輪,安全行使路程為千公里;如安裝在后輪,安全行使路程為千公里.請(qǐng)問一對(duì)輪胎能行使的最長路程是多少千公里?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分)如圖,在中, , , ,點(diǎn)在邊上運(yùn)動(dòng), 平分交邊于點(diǎn), 垂足為, 垂足為

)當(dāng)時(shí),求證:

)探究: 為何值時(shí), 相似?

)直接寫出: __________時(shí),四邊形的面積相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】己知一次函數(shù),

1)無論 k為何值,函數(shù)圖像必過定點(diǎn),求該點(diǎn)的坐標(biāo);

2)如圖 1,當(dāng) k=-時(shí),該直線交 x 軸,y 軸于 A,B 兩點(diǎn),直線 l2:y=x+1 AB 于點(diǎn) P,點(diǎn) Q l2 上一點(diǎn),若 SABQ 6 ,求 Q 點(diǎn)的坐標(biāo);

3)如圖 2,在第 2 問的條件下,已知 D 點(diǎn)在該直線上,橫坐標(biāo)為 1,C 點(diǎn)在 x 軸負(fù)半軸, ABC=45 ,動(dòng)點(diǎn) M 的坐標(biāo)為(a,a),求 CM+MD 的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案