【題目】某班的同學(xué)想測(cè)量一教樓AB的高度.如圖,大樓前有一段斜坡,已知的長(zhǎng)為16米,它的坡度.在離點(diǎn)45米的處,測(cè)得一教樓頂端的仰角為,則一教樓的高度約( )米(結(jié)果精確到0.1米)(參考數(shù)據(jù):,,

A. 44.1 B. 39.8 C. 36.1 D. 25.9

【答案】C

【解析】

延長(zhǎng)AB交直線DC于點(diǎn)F,在RtBCF中利用坡度的定義求得CF的長(zhǎng),則DF即可求得,然后在直角ADF中利用三角函數(shù)求得AF的長(zhǎng),進(jìn)而求得AB的長(zhǎng).

延長(zhǎng)AB交直線DC于點(diǎn)F.

∵在RtBCF中,,

∴設(shè)BF=k,則CF=k,BC=2k.

又∵BC=16,

k=8,

BF=8,CF=8

DF=DC+CF,

DF=45+8

∵在RtADF中,tanADF=,

AF=tan37°×(45+8)≈44.13(米),

AB=AF-BF,

AB=44.13-8≈36.1米.

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,E是對(duì)角線BD上一點(diǎn),連接AE,CE

1)求證:AE=CE;

2)若BC=BE=6,求tanBAE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)在同一直線上,點(diǎn)位于的同側(cè),連接,,,.

1)如圖1,求證:;

2)如圖2,連接,請(qǐng)直接寫出圖中所有的全等三角形(除外)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,從A城市到B城市要翻過(guò)一座大山,現(xiàn)需要打通隧道,修建高鐵方便兩地出行,已知在A城市的北偏東30°方向和B城市的北偏西67°方向有一C地,AC相距230km,求AB兩個(gè)城市之間的距離.(參考數(shù)據(jù):sin67°≈,cos67°≈,tan67°≈1.7,結(jié)果精確到1km

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線與坐標(biāo)軸軸交于點(diǎn)軸交于點(diǎn)過(guò)兩點(diǎn)的拋物線,點(diǎn)為線段上一動(dòng)點(diǎn),過(guò)點(diǎn)垂直軸于點(diǎn)交拋物線于點(diǎn).

(1)求拋物線的解析式;

(2)當(dāng)時(shí),求四邊形的面積;

(3)是否存在點(diǎn),使得相似?若存在,求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)準(zhǔn)備采購(gòu)一批特色商品,經(jīng)調(diào)查,用5000元采購(gòu)型商品的件數(shù)是用2000元采購(gòu)型商品的件數(shù)的2倍,一件型商品的進(jìn)價(jià)比一件型商品的進(jìn)價(jià)多10元.

1)求一件,型商品的進(jìn)價(jià)分別為多少元?

2)若該商場(chǎng)購(gòu)進(jìn),型商品共200件進(jìn)行試銷,其中型商品的件數(shù)不大于型商品的件數(shù),且不小于80件.已知型商品的售價(jià)為80/件,型商品的售價(jià)為60/件,且,型商品均全部售出.設(shè)購(gòu)進(jìn)型商品件,求該商場(chǎng)銷售完這批商品的利潤(rùn)之間的函數(shù)關(guān)系式,并寫出的取值范圍;

3)在(2)的條件下,商場(chǎng)決定在試銷活動(dòng)中每售出一件型商品,就從一件型商品的利潤(rùn)中捐獻(xiàn)慈善資金,若該商場(chǎng)售完、型所有商品并捐獻(xiàn)資金后獲得的最大收益是4800元,求出值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)的圖像經(jīng)過(guò)點(diǎn)A(-1,0),并與反比例函數(shù))的圖像交于Bm,4

1)求的值;

2)以AB為一邊,在AB的左側(cè)作正方形,求C點(diǎn)坐標(biāo);

3)將正方形沿著軸的正方向,向右平移n個(gè)單位長(zhǎng)度,得到正方形,線段的中點(diǎn)為點(diǎn),若點(diǎn)和點(diǎn)同時(shí)落在反比例函數(shù)的圖像上,求n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人加工同一種零件,甲每天加工的數(shù)量是乙每天加工數(shù)量的1.5倍,兩人各加工300個(gè)這種零件,甲比乙少用5天.

1)求甲、乙兩人每天各加工多少個(gè)這種零件?

2)已知甲、乙兩人加工這種零件每天的加工費(fèi)分別是150元和120元,現(xiàn)有1500個(gè)這種零件的加工任務(wù),甲單獨(dú)加工一段時(shí)間后另有安排,剩余任務(wù)由乙單獨(dú)完成.如果總加工費(fèi)為7800元,那么甲、乙各加工了多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了美化環(huán)境,建設(shè)宜居成都,我市準(zhǔn)備在一個(gè)廣場(chǎng)上種植甲、乙兩種花卉.經(jīng)市場(chǎng)調(diào)查,甲種花卉的種植費(fèi)用(元)與種植面積之間的函數(shù)關(guān)系如圖所示,乙種花卉的種植費(fèi)用為每平方米100.

(1)直接寫出當(dāng)時(shí),的函數(shù)關(guān)系式;

(2)廣場(chǎng)上甲、乙兩種花卉的種植面積共,若甲種花卉的種植面積不少于,且不超過(guò)乙種花卉種植面積的2倍,那么應(yīng)該怎樣分配甲、乙兩種花卉的種植面積才能使種植費(fèi)用最少?最少總費(fèi)用為多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案