【題目】銅仁市積極推動某公園建設(shè),通過旅游帶動一方經(jīng)濟,計劃經(jīng)過若干年使公園綠化總面積新增450萬平方米.自2016年初開始實施后,實際每年綠化面積是原計劃的1.5倍,這樣可以提前3年完成任務(wù).
(1)求實際每年綠化面積是多少萬平方米
(2)為加大公園綠化力度,市政府決定從2019年起加快綠化速度,要求不超過2年完成,那么實際平均每年綠化面積至少還要增加多少萬平方米?
【答案】(1)實際每年綠化面積為75萬平方米;(2)平均每年綠化面積至少還要增加37.5萬平方米.
【解析】
(1)設(shè)原計劃每年綠化面積為x萬平方米,則實際每年綠化面積為1.5x萬平方米.根據(jù)“實際每年綠化面積是原計劃的1.5倍,這樣可提前3年完成任務(wù)”列出方程;
(2)設(shè)平均每年綠化面積增加a萬平方米.則由“完成新增綠化面積不超過2年”列出不等式.
解:(1)設(shè)原計劃每年綠化面積為x萬平方米,
,
解得x=50,
經(jīng)檢驗,x=50是此分式方程的解.
∴1.5x=75.
答:實際每年綠化面積為75萬平方米.
(2)設(shè)平均每年綠化面積至少還要增加a萬平方米,
75×3+2(75+a)≥450,解得a≥37.5.
答:平均每年綠化面積至少還要增加37.5萬平方米.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠現(xiàn)有甲種原料360千克,乙種原料290千克,計劃利用這兩種原料生產(chǎn)A、B兩種產(chǎn)品共50件,已知生產(chǎn)一件A種產(chǎn)品用甲種原料9千克,乙種原料3千克,可獲利700元;生產(chǎn)一件B種產(chǎn)品用甲種原料4千克,乙種原料10千克,可獲利1200元.
(1)按要求安排A、B兩種產(chǎn)品的生產(chǎn)件數(shù),有哪幾種方案?請你設(shè)計出來;
(2)設(shè)生產(chǎn)A、B兩種產(chǎn)品總利潤為y元,其中一種產(chǎn)品生產(chǎn)件數(shù)為x件,試寫出y與x之間的函數(shù)關(guān)系式,并利用函數(shù)的性質(zhì)說明那種方案獲利最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與探究
閱讀理解:數(shù)軸是學(xué)習(xí)有理數(shù)的一種重要工具,任何有理數(shù)都可以用數(shù)軸上的點表示,這樣能夠運用數(shù)形結(jié)合的方法解決一些問題.例如,兩個有理數(shù)在數(shù)軸上對應(yīng)的點之間的距離可以用較大數(shù)與較小數(shù)的差來表示.例如:
在數(shù)軸上,有理數(shù)3與1對應(yīng)的兩點之間的距離為;
在數(shù)軸上,有理數(shù)3與-2對應(yīng)的兩點之間的距離為;
在數(shù)軸上,有理數(shù)-3與-2對應(yīng)的兩點之間的距離為.
解決問題:如圖所示,已知點表示的數(shù)為-3,點表示的數(shù)為-1,點表示的數(shù)為2.
(1)點和點之間的距離為______.
(2)若數(shù)軸上動點表示的數(shù)為,當(dāng)時,點和點之間的距離可表示為______;當(dāng)時,點和點之間的距離可表示為______.
(3)若數(shù)軸上動點表示的數(shù)為,點在點和點之間,點和點之間的距離表示為,點和點之間的距離表示為,求(用含的代數(shù)式表示并進行化簡)
(4)若數(shù)軸上動點表示的數(shù)為-2,將點向右移動19個單位長度,再向左移動23個單位長度終點為,那么,兩點之間的距離是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下圖的數(shù)陣是由全體奇數(shù)排成:
(1)圖中平行四邊形框內(nèi)的九個數(shù)之和與中間的數(shù)有什么關(guān)系?
(2)在數(shù)陣圖中任意作一類似(1)中的平行四邊形框,這九個數(shù)之和還有這種規(guī)律嗎?請說出理由;
(3)這九個數(shù)之和能等于1998嗎?2005,1017呢?若能,請寫出這九個數(shù)中最小的一個;若不能,請說出理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下圖是昌平區(qū)2019年1月份每天的最低和最高氣溫,觀察此圖,下列說法正確的是( )
A.在1月份中,最高氣溫為10℃,最低氣溫為-2℃
B.在10號至16號的氣溫中,每天溫差最小為7℃
C.每天的最高氣溫均高于0℃,最低氣溫均低于0℃
D.每天的最高氣溫與最低氣溫都是具有相反意義的量
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將函數(shù)y=(x﹣2)2+1的圖象沿y軸向上平移得到一條新函數(shù)的圖象,其中點A(1,m),B(4,n)平移后的對應(yīng)點分別為點A'、B'.若曲線段AB掃過的面積為9(圖中的陰影部分),則新圖象的函數(shù)表達(dá)式是( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知邊長為4的正方形ABCD,頂點A與坐標(biāo)原點重合,一反比例函數(shù)圖象過頂點C,動點P以每秒1個單位速度從點A出發(fā)沿AB方向運動,動點Q同時以每秒4個單位速度從D點出發(fā)沿正方形的邊DC﹣CB﹣BA方向順時針折線運動,當(dāng)點P與點Q相遇時停止運動,設(shè)點P的運動時間為t.
(1)求出該反比例函數(shù)解析式;
(2)連接PD,當(dāng)以點Q和正方形的某兩個頂點組成的三角形和△PAD全等時,求點Q的坐標(biāo);
(3)用含t的代數(shù)式表示以點Q、P、D為頂點的三角形的面積s,并指出相應(yīng)t的取值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)()的圖象與軸交于兩點(點在點的左側(cè)),與軸交于點,且,,頂點為.
(1)求二次函數(shù)的解析式;
(2)點為線段上的一個動點,過點作軸的垂線,垂足為,若,四邊形的面積為,求關(guān)于的函數(shù)解析式,并寫出的取值范圍;
(3)探索:線段上是否存在點,使為直角三角形?如果存在,求出點的坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在航線l的兩側(cè)分別有觀測點A和B,點B到航線l的距離BD為4km,點A位于點B北偏西60°方向且與B相距20km處.現(xiàn)有一艘輪船從位于點A南偏東74°方向的C處,沿該航線自東向西航行至觀測點A的正南方向E處.求這艘輪船的航行路程CE的長度.(結(jié)果精確到0.1km)(參考數(shù)據(jù):≈1.73,sin74°≈0.96,cos74°≈0.28,tan74°≈3.49)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com