精英家教網(wǎng)在一次數(shù)學(xué)活動課上,老師帶領(lǐng)學(xué)生去測一條南北流向的河寬,如圖所示,某學(xué)生在河?xùn)|岸點A處觀測到河對岸水邊有一點C,測得C在A北偏西31°的方向上,沿河岸向北前行20米到達(dá)B處,測得C在B北偏西45°的方向上,請你根據(jù)以上數(shù)據(jù),幫助該同學(xué)計算出這條河的寬度.(參考數(shù)值:tan31°≈
3
5
,sin31°≈
1
2
分析:河寬就是點C到AB的距離,因此過點C作CD⊥AB,垂足為D,根據(jù)AB=AD-BD=20,通過解兩個直角三角形分別表示AD、BD的方程求解.
解答:精英家教網(wǎng)解:過點C作CD⊥AB,垂足為D,
設(shè)CD=x米,
在Rt△BCD中,∠CBD=45°,
∴BD=CD=x米.
在Rt△ACD中,∠DAC=31°,
AD=AB+BD=(20+x)米,CD=x米,(3分)
∵tan∠DAC=
CD
AD
,
x
20+x
=
3
5

解得x=30.
經(jīng)檢驗x=30是原方程的解,且符合題意.
答:這條河的寬度為30米.(6分)
點評:“化斜為直”是解三角形的基本思路,因此需作垂線(高)構(gòu)造直角三角形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在一次數(shù)學(xué)活動課上,老師帶領(lǐng)同學(xué)們?nèi)y量一座古塔CD的高度.他們首先從A處安置測傾器,測得塔頂C的仰角∠CFE=21°,然后往塔的方向前進(jìn)50米到達(dá)B處,此精英家教網(wǎng)時測得仰角∠CGE=37°,已知測傾器高1.5米,請你根據(jù)以上數(shù)據(jù)計算出古塔CD的高度.
(參考數(shù)據(jù):sin37°≈
3
5
,tan37°≈
3
4
,sin21°≈
9
25
,tan21°≈
3
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在一次數(shù)學(xué)活動課上,張明同學(xué)將矩形ABCD沿直線CE折疊,頂點B恰好落在AD邊上F點處,如圖所示,已知CD=8cm,BE=5cm,則AD=
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在一次數(shù)學(xué)活動課上,老師帶領(lǐng)學(xué)生去測長江的寬度,某學(xué)生在長江北岸點A處觀測到長江對岸水邊有一點C,測得C在A東南方向上,沿長江邊向東前行200米到達(dá)B處,測得C在B南偏東30°的方向上.
(1)畫出學(xué)生測量的示意圖;
(2)請你根據(jù)以上數(shù)據(jù),幫助該同學(xué)計算出長江的寬度(精確到0.1 m).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在一次數(shù)學(xué)活動課上,王老師給學(xué)生發(fā)了一塊長40cm,寬30cm的長方形紙片(如圖),要求折成一個高為5cm的無蓋的且容積最大的長方體盒子.
(1)該如何裁剪呢?請畫出示意圖,并標(biāo)出尺寸;
(2)求該盒子的容積.

查看答案和解析>>

同步練習(xí)冊答案