【題目】商場(chǎng)出售的A型冰箱每臺(tái)售價(jià)2190元,每日耗電量為1度,而B型節(jié)能冰箱每臺(tái)售價(jià)雖比A型冰箱高出10%,但每日耗電量卻為0.55度,現(xiàn)將A型冰箱打折出售,商場(chǎng)最少打幾折消費(fèi)者購(gòu)買(mǎi)才合算?(按使用期為10年,每年365天,每度電0.40元計(jì)算)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái)市政府每年出資新建一批廉租房,使城鎮(zhèn)住房困難的居民住房狀況得到改善.下面是某小區(qū)2006~2008年每年人口總數(shù)和人均住房面積的統(tǒng)計(jì)的折線圖(人均住房面積=該小區(qū)住房總面積/該小區(qū)人口總數(shù),單位:㎡/人).
根據(jù)以上信息,則下列說(shuō)法:①該小區(qū)2006~2008年這三年中,2008年住房總面積最大;②該小區(qū)2007年住房總面積達(dá)到1.728×106 m;③該小區(qū)2008年人均住房面積的增長(zhǎng)率為4%.其中正確的有
(A)①②③(B)①②(C)① (D)③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,拋物線y=ax2﹣ax﹣4a與x軸交于A,B兩點(diǎn),與y軸交于C點(diǎn),A點(diǎn)在B點(diǎn)左側(cè),C點(diǎn)在x軸下方,且△AOC∽△COB
(1)求這條拋物線的解析式及直線BC的解析式;
(2)設(shè)點(diǎn)D為拋物線對(duì)稱(chēng)軸上的一點(diǎn),當(dāng)點(diǎn)D在對(duì)稱(chēng)軸上運(yùn)動(dòng)時(shí),是否可以與點(diǎn)C,A,B三點(diǎn),構(gòu)成梯形的四個(gè)頂點(diǎn)?若可以,求出點(diǎn)D坐標(biāo),若不可以,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,點(diǎn)O為直線AB上一點(diǎn),過(guò)點(diǎn)O作射線OC,使∠BOC=120°.將一直角三角形的直角頂點(diǎn)放在點(diǎn)O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.
(1)將圖1中的三角板繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)至圖2,使一邊OM在∠BOC的內(nèi)部,且恰好平分∠BOC,問(wèn):直線ON是否平分∠AOC?請(qǐng)說(shuō)明理由;
(2)將圖1中的三角板繞點(diǎn)O按每秒5°的速度沿逆時(shí)針?lè)较蛐D(zhuǎn)一周,在旋轉(zhuǎn)的過(guò)程中,第t秒時(shí),直線ON恰好平分銳角∠AOC,則t的值為 (直接寫(xiě)出結(jié)果);
(3)將圖1中的三角板繞點(diǎn)O順時(shí)針旋轉(zhuǎn)至圖3,使ON在∠AOC的內(nèi)部,OD為∠BOM平分線.請(qǐng)?zhí)骄浚骸?/span>MOD與∠NOC之間的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】棱長(zhǎng)為a的正方體,擺放成如圖所示的形狀,動(dòng)手試一試,并回答下列問(wèn)題:
(1)如果這一物體擺放了如圖所示的上下三層,由幾個(gè)正方體構(gòu)成?
(2)如圖形所示物體的表面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知線段,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,如圖1所示.
(1)平移線段到線段,使點(diǎn)的對(duì)應(yīng)點(diǎn)為,點(diǎn)的對(duì)應(yīng)點(diǎn)為,若點(diǎn)的坐標(biāo)為,求點(diǎn)的坐標(biāo);
(2)平移線段到線段,使點(diǎn)在軸的正半軸上,點(diǎn)在第二象限內(nèi)(與對(duì)應(yīng), 與對(duì)應(yīng)),連接如圖2所示.若表示△BCD的面積),求點(diǎn)、的坐標(biāo);
(3)在(2)的條件下,在軸上是否存在一點(diǎn),使?若存在,求出點(diǎn)的坐標(biāo),
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,A、B為x軸上兩點(diǎn),C、D為y軸上的兩點(diǎn),經(jīng)過(guò)點(diǎn)A、C、B的拋物線的一部分c1與經(jīng)過(guò)點(diǎn)A、D、B的拋物線的一部分c2組合成一條封閉曲線,我們把這條封閉曲線成為“蛋線”.已知點(diǎn)C的坐標(biāo)為(0,﹣ ),點(diǎn)M是拋物線C2:y=mx2﹣2mx﹣3m(m<0)的頂點(diǎn).
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)“蛋線”在第四象限上是否存在一點(diǎn)P,使得△PBC的面積最大?若存在,求出△PBC面積的最大值;若不存在,請(qǐng)說(shuō)明理由;
(3)當(dāng)△BDM為直角三角形時(shí),求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】【閱讀學(xué)習(xí)】 劉老師提出這樣一個(gè)問(wèn)題:已知α為銳角,且tanα=,求sin2α的值.
小娟是這樣解決的:
如圖1,在⊙O中,AB是直徑,點(diǎn)C在⊙O上,∠BAC=α,所以∠ACB=90°,tanα==.
易得∠BOC=2α.設(shè)BC=x,則AC=3x,則AB=x.作CD⊥AB于D,求出CD= (用含x的式子表示),可求得sin2α== .
【問(wèn)題解決】
已知,如圖2,點(diǎn)M、N、P為圓O上的三點(diǎn),且∠P=β,tanβ =,求sin2β的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,第(1)個(gè)多邊形由正三角形“擴(kuò)展”而來(lái),邊數(shù)記為a3,第(2)個(gè)多邊形由正方形“擴(kuò)展”而來(lái),邊數(shù)記為a4,……,依此類(lèi)推,由正n邊形“擴(kuò)展”而來(lái)的多邊形的邊數(shù)記為an(n≥3).則當(dāng)an=90時(shí),n的值是_________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com