如圖,在Rt△ABC中,∠ACB=90°,∠ABC=30°,直角∠MON的頂點O在AB上,OM、ON分別交CA、CB于點P、Q,∠MON繞點O任意旋轉(zhuǎn).當(dāng)
OA
OB
=
1
2
時,
OP
OQ
的值為
3
2
3
2
.(用含n的式子表示)
分析:如圖,過點O作OH⊥AC于H,OG⊥BC于G,由條件可以表示出HO、GO的值,通過證明△PHO∽△QGO由相似三角形的性質(zhì)就可以求出結(jié)論.
解答:解:過點O作OH⊥AC于H,OG⊥BC于G,
∴∠OHP=∠OGQ=90°.
∵∠ACB=90°,
∴四邊形HCGO為矩形,
∴∠HOG=90°,
∴∠HOP=∠GOQ,
∴△PHO∽△QGO,
OH
GO
=
OP
OQ

OA
OB
=
1
2
,設(shè)OA=x,則OB=2x,且∠ABC=30°,
∴AH=
1
2
x,OG=x.
在Rt△AHO中,由勾股定理,得
OH=
3
2
x,
3
2
x
x
=
OP
OQ

OP
OQ
=
3
2

故答案為:
3
2
點評:本題考查了相似三角形的判定與性質(zhì),勾股定理的運用,矩形的性質(zhì),含30度角的直角三角形的性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•莆田質(zhì)檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點D,點E是AB上一點,以AE為直徑的⊙O過點D,且交AC于點F.
(1)求證:BC是⊙O的切線;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點D,求點D到BC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個30°角的頂點D放在AB邊上移動,使這個30°角的兩邊分別與△ABC的邊AC、BC相交于點E、F,且使DE始終與AB垂直.
(1)畫出符合條件的圖形.連接EF后,寫出與△ABC一定相似的三角形;
(2)設(shè)AD=x,CF=y.求y與x之間函數(shù)解析式,并寫出函數(shù)的定義域;
(3)如果△CEF與△DEF相似,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,BD⊥AC,sinA=
3
5
,則cos∠CBD的值是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點,連接DE,點P從點A出發(fā),沿折線AD-DE-EB運動,到點B停止.點P在AD上以
5
cm/s的速度運動,在折線DE-EB上以1cm/s的速度運動.當(dāng)點P與點A不重合時,過點P作PQ⊥AC于點Q,以PQ為邊作正方形PQMN,使點M落在線段AC上.設(shè)點P的運動時間為t(s).
(1)當(dāng)點P在線段DE上運動時,線段DP的長為
(t-2)
(t-2)
cm,(用含t的代數(shù)式表示).
(2)當(dāng)點N落在AB邊上時,求t的值.
(3)當(dāng)正方形PQMN與△ABC重疊部分圖形為五邊形時,設(shè)五邊形的面積為S(cm2),求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊答案