【題目】如圖,已知拋物線(xiàn)y=ax2+bx經(jīng)過(guò)點(diǎn)A(4,0),點(diǎn)B是其頂點(diǎn),∠AOB=45°,OC⊥OB交此拋物線(xiàn)于點(diǎn)C,動(dòng)直線(xiàn)y=kx與拋物線(xiàn)交于點(diǎn)D,分別過(guò)點(diǎn)B、C作BE、CF垂直動(dòng)直線(xiàn)y=kx于點(diǎn)E、F.
(1)求此拋物線(xiàn)的解析式;
(2)當(dāng)直線(xiàn)y=kx把∠AOC分成的兩個(gè)角的度數(shù)之比恰好為1:2時(shí),求k的值;
(3)BE+CF是否存在最大值?若存在,請(qǐng)直接寫(xiě)出此最大值和此時(shí)k的值;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)y=;(2)k=或k=2-;(3)存在,BE+CF=4,此時(shí)k=-2.
【解析】
(1)過(guò)點(diǎn)B作BH⊥x軸于點(diǎn)H,求出點(diǎn)B的坐標(biāo),用待定系數(shù)法可求出解析式;
(2)先求出點(diǎn)C的坐標(biāo),分兩種情況:∴①當(dāng)∠AOD=30°時(shí),過(guò)點(diǎn)D作DP⊥x軸于點(diǎn)P,可求出k的值;②當(dāng)∠COD=30°時(shí),如圖,設(shè)CQ與OF的交點(diǎn)為K,過(guò)點(diǎn)D作DP⊥x軸于點(diǎn)P,過(guò)點(diǎn)K作KN⊥OC于N,證明△ADP∽△AKQ,求出CN、CK、KQ的長(zhǎng),則k的值可求出;
(3)連接BC,由垂線(xiàn)段最短可知BE+CF≤BC,當(dāng)且僅當(dāng)直線(xiàn)y=kx與BC垂直,即點(diǎn)E、F重合時(shí),BE+CF=BC,此時(shí)BE+CF取得最大值,可求出最大值和k的值.
解:(1)∵A(4,0),
∴OA=4,
過(guò)點(diǎn)B作BH⊥x軸于點(diǎn)H,如圖1,
∴∠OHB=90°,OH=AH=2,
∵∠AOB=45°,
∴∠OBH=∠AOB=45°,
∴OH=BH=2,
∴點(diǎn)B的坐標(biāo)為(2,﹣2),
∴ ,
解得, ,
∴此拋物線(xiàn)的解析式為y=;
(2)如圖2,過(guò)點(diǎn)C作CQ⊥x軸于點(diǎn)Q,
∵OC⊥OB,∠AOB=45°,
∴∠COA=∠AOB=45°,
∴CQ=OQ,
∴=x,解得,x1=0,x2=6,
∴點(diǎn)C的坐標(biāo)為(6,6),
∵直線(xiàn)y=kx把∠AOC分成的兩個(gè)角的度數(shù)之比恰好為1:2,
∴①當(dāng)∠AOD=30°時(shí),過(guò)點(diǎn)D作DP⊥x軸于點(diǎn)P,
k==tan30°=,
②當(dāng)∠COD=30°時(shí),如圖3,設(shè)CQ與OF的交點(diǎn)為K,過(guò)點(diǎn)D作DP⊥x軸于點(diǎn)P,過(guò)點(diǎn)K作KN⊥OC于N,
∴DP∥CQ,∠CNK=∠ONK=90°,
∴ ,
∴k= ,
又∵∠OCQ=45°,
∴CN=KN,CK=,
∴OC=ON+NC=(+1)CN,
∵∠BOC=90°,點(diǎn)B、C的坐標(biāo)分別為(2,﹣2),(6,6)∠COF=∠AOB=45°,
∴OB= ,OC=,
∴ ,
∴CN=3 ,
∴ ,
∴KQ=CQ﹣CK=6﹣(6-6)=12﹣6,
∴k===2-,
(3)如圖4,連接BC,由垂線(xiàn)段最短可知BE+CF≤BC,
當(dāng)且僅當(dāng)直線(xiàn)y=kx與BC垂直,即點(diǎn)E、F重合時(shí),BE+CF=BC,此時(shí)BE+CF取得最大值,
∴BE+CF==4,
D點(diǎn)的坐標(biāo)為(3,﹣1.5).
k=﹣2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一副直角三角板由一塊含30°的直角三角板與一塊等腰直角三角板組成,且含30°角的三角板的較長(zhǎng)直角邊與另一三角板的斜邊相等(如圖1)
(1)如圖1,這副三角板中,已知AB=2,AC= ,A′D=
(2)這副三角板如圖1放置,將△A′DC′固定不動(dòng),將△ABC通過(guò)旋轉(zhuǎn)或者平移變換可使△ABC的斜邊BC經(jīng)過(guò)△A′DC′′的直角頂點(diǎn)D.
方法一:如圖2,將△ABC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)角度α(0°<α<180°)
方法二:如圖3,將△ABC沿射線(xiàn)A′C′方向平移m個(gè)單位長(zhǎng)度
方法三:如圖4,將△ABC繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)角度β(0°<β<180°)
請(qǐng)你解決下列問(wèn)題:
①根據(jù)方法一,直接寫(xiě)出α的值為: ;
②根據(jù)方法二,計(jì)算m的值;
③根據(jù)方法三,求β的值.
(3)若將△ABC從圖1位置開(kāi)始沿射線(xiàn)A′C′平移,設(shè)AA′=x,兩三角形重疊部分的面積為y,請(qǐng)直接寫(xiě)出y與x之間的函數(shù)關(guān)系式和相應(yīng)的自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,雙曲線(xiàn)y=(x>0)經(jīng)過(guò)△OAB的頂點(diǎn)A和OB的中點(diǎn)C,AB∥x軸,點(diǎn)A的坐標(biāo)為(2,3),則△OAB的面積_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A,B(-1,2)是一次函數(shù)與反比例函數(shù)
()圖象的兩個(gè)交點(diǎn),AC⊥x軸于C,BD⊥y軸于D.
(1)根據(jù)圖象直接回答:在第二象限內(nèi),當(dāng)x取何值時(shí),一次函數(shù)大于反比例函數(shù)的值?
(2)求一次函數(shù)解析式及m的值;
(3)P是線(xiàn)段AB上的一點(diǎn),連接PC,PD,若△PCA和△PDB面積相等,求點(diǎn)P坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等腰Rt△ABC的直角頂點(diǎn)B在y軸上,邊AB交x軸于點(diǎn)D(,0),點(diǎn)C的坐標(biāo)為(﹣4,0),反比例函數(shù)y=(k≠0)的圖象過(guò)點(diǎn)A,則k=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為使高一新生入校后及時(shí)穿上合身的校服,現(xiàn)提前對(duì)某校九年級(jí)三班學(xué)生即將所穿校服型號(hào)情況進(jìn)行了摸底調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如圖兩個(gè)不完整的統(tǒng)計(jì)圖(校服型號(hào)以身高作為標(biāo)準(zhǔn),共分為6個(gè)型號(hào)):
根據(jù)以上信息,解答下列問(wèn)題:
(1)該班共有 名學(xué)生;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)該班學(xué)生所穿校服型號(hào)的眾數(shù)為 ,中位數(shù)為 ;
(4)如果該校預(yù)計(jì)招收新生1500名,根據(jù)樣本數(shù)據(jù),估計(jì)新生穿170型校服的學(xué)生大約有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分別是點(diǎn)D,E.
(1)求證:△BEC≌△CDA;
(2)當(dāng)AD=3,BE=1時(shí),求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)y=x+a與x軸交于點(diǎn)A(4,0),與y軸交于點(diǎn)B,拋物線(xiàn)y=x2+bx+c經(jīng)過(guò)點(diǎn)A,B.點(diǎn)M(m,0)為x軸上一動(dòng)點(diǎn),過(guò)點(diǎn)M且垂直于x軸的直線(xiàn)分別交直線(xiàn)AB及拋物線(xiàn)于點(diǎn)P,N.
(1)填空:點(diǎn)B的坐標(biāo)為 ,拋物線(xiàn)的解析式為 ;
(2)當(dāng)點(diǎn)M在線(xiàn)段OA上運(yùn)動(dòng)時(shí)(不與點(diǎn)O,A重合),
①當(dāng)m為何值時(shí),線(xiàn)段PN最大值,并求出PN的最大值;②求出使△BPN為直角三角形時(shí)m的值;
(3)若拋物線(xiàn)上有且只有三個(gè)點(diǎn)N到直線(xiàn)AB的距離是h,請(qǐng)直接寫(xiě)出此時(shí)由點(diǎn)O,B,N,P構(gòu)成的四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形網(wǎng)格中建立如圖所示的平面直角坐標(biāo)系,△ABC的頂點(diǎn)都在格點(diǎn)上,請(qǐng)解答下列問(wèn)題:
(1)①作出△ABC向左平移4個(gè)單位長(zhǎng)度后得到的△A1B1C1, 并寫(xiě)出點(diǎn)C1的坐標(biāo);
②作出△ABC關(guān)于原點(diǎn)O對(duì)稱(chēng)的△A2B2C2, 并寫(xiě)出點(diǎn)C2的坐標(biāo);
(2)已知△ABC關(guān)于直線(xiàn)l對(duì)稱(chēng)的△A3B3C3的頂點(diǎn)A3的坐標(biāo)為(-4,-2),請(qǐng)直接寫(xiě)出直線(xiàn)l的函數(shù)解析式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com