【題目】如圖,都是由邊長為 1 的正方體疊成的立體圖形例如第個圖形由 1 個正方體疊成,第個圖形由 4 個正方體疊成,個圖形由 10 個正方體疊成,依次規(guī)律個圖形由( )個正方形疊成.

A. 86 B. 87 C. 85 D. 84

【答案】D

【解析】

根據(jù)圖形的變換規(guī)律,可知第n個圖形中的正方體的個數(shù)為1+3+6+…+ ,據(jù)此可得第(7)個圖形中正方體的個數(shù).

由圖可得:
第(1)個圖形中正方體的個數(shù)為1;
第(2)個圖形中正方體的個數(shù)為4=1+3;
第(3)個圖形中正方體的個數(shù)為10=1+3+6;
第(4)個圖形中正方體的個數(shù)為20=1+3+6+10;
故第n個圖形中的正方體的個數(shù)為1+3+6+…+,
第(7)個圖形中正方體的個數(shù)為1+3+6+10+15+21+28=84.
故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線AB,CD相交于點O,OE平分∠AOD,F(xiàn)O⊥AB,垂足為O,∠BOD=∠DOE.

(1)求BOF的度數(shù);

(2)請寫出圖中與BOD相等的所有的角.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市為創(chuàng)建全國文明城市,開展“美化綠化城市”活動,計劃經(jīng)過若干年使城區(qū)綠化總面積新增360萬平方米.自2013年初開始實施后,實際每年綠化面積是原計劃的1.6倍,這樣可提前4年完成任務(wù).

(1)問實際每年綠化面積多少萬平方米?

(2)為加大創(chuàng)城力度,市政府決定從2016年起加快綠化速度,要求不超過2年完成,那么實際平均每年綠化面積至少還要增加多少萬平方米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=x2+bx+c與y=x的圖象如圖所示,有以下結(jié)論:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④當(dāng)1<x<3時,x2+(b﹣1)x+c<0;其中正確的個數(shù)有個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)軸上,點A向右移動1個單位得到點B,點B向右移動(n+1)(n為正整數(shù))個單位得到點C,點A、B、C分別表示有理數(shù)a、bc

1)當(dāng)n=1時,A、B、C三點在數(shù)軸上的位置如圖所示,a、b、c三個數(shù)的乘積為正數(shù).

①數(shù)軸上原點的位置可能(

A.在點A左側(cè)或在A、B兩點之間

B.在點C右側(cè)或在A、B兩點之間

C.在點A左側(cè)或在B、C兩點之間

D.在點C右側(cè)或在BC兩點之間

②若這三個數(shù)的和與其中的一個數(shù)相等,則a=_________(簡述理由)

2)將點C向右移動(n+2)個單位得到點D,點D表示有理數(shù)d,a、b、c、d四個數(shù)的積為正數(shù),且這四個數(shù)的和與其中的兩個數(shù)的和相等,a為整數(shù),若n分別取1,23,,100時,對應(yīng)的a的值分別記為,,則

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+bx+c與x軸交于A、B兩點,與y軸交于點C,其中點B在x軸的正半軸上,點C在y軸的正半軸上,線段OB、OC的長(OB<OC)是方程x2﹣10x+16=0的兩個根,且拋物線的對稱軸是直線x=﹣2.

(1)求A、B、C三點的坐標;
(2)求此拋物線的表達式;
(3)連接AC、BC,若點E是線段AB上的一個動點(與點A、點B不重合),過點E作EF∥AC交BC于點F,連接CE,設(shè)AE的長為m,△CEF的面積為S,求S與m之間的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
(4)在(3)的基礎(chǔ)上試說明S是否存在最大值?若存在,請求出S的最大值,并求出此時點E的坐標,判斷此時△BCE的形狀;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,D、E分別是ACAB上的點,BDCE相交于點O,給出下列四個條件:

①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD④OB=OC

1)上述四個條件中,由哪兩個條件可以判定AB=AC?(用序號寫出所有的情形)

2)選擇(1)小題中的一種情形,說明AB=AC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年9月,莉莉進入八中初一,在準備開學(xué)用品時,她決定購買若干個某款筆記本,甲、乙兩家文具店都有足夠數(shù)量的該款筆記本,這兩家文具店該款筆記本標價都是20/個.甲文具店的銷售方案是:購買該筆記本的數(shù)量不超過5個時,原價銷售;購買該筆記本超過5個時,從第6個開始按標價的八折出售:乙文具店的銷售方案是:不管購買多少個該款筆記本,一律按標價的九折出售.

(1)若設(shè)莉莉要購買xx>5)個該款筆記本,請用含x的代數(shù)式分別表示莉莉到甲文具店和乙文具店購買全部該款筆記本所需的費用;

(2)在(1)的條件下,莉莉購買多少個筆記本時,到乙文具店購買全部筆記本所需的費用與到甲文具店購買全部筆記本所需的費用相同?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某家電專賣店銷售每臺進價分別200元、160元的A,B兩種型號的電風(fēng)扇,下表是近兩周的銷售情況

銷售時段

銷售數(shù)量

銷售收入

A 種型號

B種型號

第一周

3

4

1550 元

第二周

4

8

2600 元

(進價、售價均保持不變,利銷=銷售收入-進貨成本)

(1)求A,B兩種型號的電風(fēng)扇的銷售單價;

(2)若專賣店準備用不多于3560元的金額再采購這兩種型號的電風(fēng)扇共20臺,且采購A型電風(fēng)扇的數(shù)量不少于8臺.求專賣店有哪幾種采購方案?

(3)在(2)的條件下.如果采購的電風(fēng)扇都能銷售完,請直接寫出哪種采購方案專賣店所獲利潤最大?最大利潤是多少?

查看答案和解析>>

同步練習(xí)冊答案