【題目】如圖,在Rt△ABO中,∠OBA=90°,A(8,8),點C在邊AB上,且,點D為OB的中點,點P為邊OA上的動點,當(dāng)點P在OA上移動時,使四邊形PDBC周長最小的點P的坐標(biāo)為( 。
A.(2,2)B.C.D.
【答案】D
【解析】
根據(jù)已知條件得到AB=OB=8,∠AOB=45°,求得BC=6,OD=BD=4,得到D(4,0),C(8,6),作D關(guān)于直線OA的對稱點E,連接EC交OA于P,則此時,四邊形PDBC周長最小,E(0,4),求得直線EC的解析式為y=x+4,解方程組即可得到結(jié)論.
解:∵在Rt△ABO中,∠OBA=90°,A(8,8),
∴AB=OB=8,∠AOB=45°,
∵,點D為OB的中點,
∴BC=6,OD=BD=4,
∴D(4,0),C(8,6),
作D關(guān)于直線OA的對稱點E,連接EC交OA于P,
則此時,四邊形PDBC周長最小,E(0,4),
∵直線OA 的解析式為y=x,
設(shè)直線EC的解析式為y=kx+b,
∴,
解得:,
∴直線EC的解析式為y=x+4,
解 得,,
∴P(,),
故選:D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了提高服務(wù)質(zhì)量,某賓館決定對甲、乙兩種套房進行星級提升,已知甲種套房提升費用比乙種套房提升費用少3萬元,如果提升相同數(shù)量的套房,甲種套房費用為625萬元,乙種套房費用為700萬元.
(1)甲、乙兩種套房每套提升費用各多少萬元?
(2)如果需要甲、乙兩種套房共80套,市政府籌資金不少于2090萬元,但不超過2096萬元,且所籌資金全部用于甲、乙種套房星級提升,市政府對兩種套房的提升有幾種方案?哪一種方案的提升費用最少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑作⊙O交BC于點D,過點D作⊙O的切線DE交AC于點E,交AB延長線于點F.
(1)求證:BD=CD;
(2)求證:DC2=CEAC;
(3)當(dāng)AC=5,BC=6時,求DF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一艘漁船正以60海里/小時的速度向正東方向航行,在A處測得島礁P在東北方向上,繼續(xù)航行1.5小時后到達B處,此時測得島礁P在北偏東30°方向,同時測得島礁P正東方向上的避風(fēng)港M在北偏東60°方向.為了在臺風(fēng)到來之前用最短時間到達M處,漁船立刻加速以75海里/小時的速度繼續(xù)航行_____小時即可到達.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,學(xué)校的實驗樓對面是一幢教學(xué)樓,小敏在實驗樓的窗口C測得教學(xué)樓頂部D的仰角為18°,教學(xué)樓底部B的俯角為20°,量得實驗樓與教學(xué)樓之間的距離AB=30m.
(1)求∠BCD的度數(shù).
(2)求教學(xué)樓的高BD.(結(jié)果精確到0.1m,參考數(shù)據(jù):tan20°≈0.36,tan18°≈0.32)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,∠ACB=90°,OC=2BO,AC=6,點B的坐標(biāo)為(1,0),拋物線y=﹣x2+bx+c經(jīng)過A、B兩點.
(1)求點A的坐標(biāo);
(2)求拋物線的解析式;
(3)點P是直線AB上方拋物線上的一點,過點P作PD垂直x軸于點D,交線段AB于點E,使PE=DE.
①求點P的坐標(biāo);
②在直線PD上是否存在點M,使△ABM為直角三角形?若存在,求出符合條件的所有點M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知頂點為A的拋物線y=a(x-)2-2經(jīng)過點B(-,2),點C(,2).
(1)求拋物線的表達式;
(2)如圖1,直線AB與x軸相交于點M,與y軸相交于點E,拋物線與y軸相交于點F,在直線AB上有一點P,若∠OPM=∠MAF,求△POE的面積;
(3)如圖2,點Q是折線A-B-C上一點,過點Q作QN∥y軸,過點E作EN∥x軸,直線QN與直線EN相交于點N,連接QE,將△QEN沿QE翻折得到△QEN′,若點N′落在x軸上,請直接寫出Q點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已如:⊙O與⊙O上的一點A
(1)求作:⊙O的內(nèi)接正六邊形ABCDEF;( 要求:尺規(guī)作圖,不寫作法但保留作圖痕跡)
(2)連接CE,BF,判斷四邊形BCEF是否為矩形,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com