【題目】某中學(xué)組織學(xué)生參加交通安全知識(shí)網(wǎng)絡(luò)測(cè)試活動(dòng).小王對(duì)九年(3)班全體學(xué)生的測(cè)試成績(jī)進(jìn)行了統(tǒng)計(jì),并將成績(jī)分為四個(gè)等級(jí):優(yōu)秀、良好、一般、不合格,繪制成如下的統(tǒng)計(jì)圖(不完整),
請(qǐng)你根據(jù)圖中所給的信息解答下列問(wèn)題:
(1)九年(3)班有名學(xué)生,并把折線統(tǒng)計(jì)圖補(bǔ)充完整;
(2)已知該市共有12000名中學(xué)生參加了這次交通安全知識(shí)測(cè)試,請(qǐng)你根據(jù)該班成績(jī)估計(jì)該市在這次測(cè)試中成績(jī)?yōu)閮?yōu)秀的人數(shù);
(3)小王查了該市教育網(wǎng)站發(fā)現(xiàn),全市參加本次測(cè)試的學(xué)生中,成績(jī)?yōu)閮?yōu)秀的有5400人,請(qǐng)你用所學(xué)統(tǒng)計(jì)知識(shí)簡(jiǎn)要說(shuō)明實(shí)際優(yōu)秀人數(shù)與估計(jì)人數(shù)出現(xiàn)較大偏差的原因;
(4)該班從成績(jī)前3名(2男1女)的學(xué)生中隨機(jī)抽取2名參加復(fù)賽,請(qǐng)用樹(shù)狀圖或列表法求出抽到“一男一女”的概率.
【答案】
(1)50;
(2)解:該市在這次測(cè)試中成績(jī)?yōu)閮?yōu)秀的人數(shù)為:12000× =3600(人),
答:估計(jì)該市在這次測(cè)試中成績(jī)?yōu)閮?yōu)秀的人數(shù)為3600人
(3)解:實(shí)際優(yōu)秀人數(shù)與估計(jì)人數(shù)出現(xiàn)較大偏差的原因:
小王只抽查了九年(3)班的測(cè)試成績(jī),對(duì)于全市來(lái)講不具有代表性,且抽查的樣本只有50名學(xué)生,對(duì)于全市12000名中學(xué)生來(lái)講不具有廣泛性
(4)解:列表如下:
男1 | 男2 | 女 | |
男1 | 男2男1 | 女男1 | |
男2 | 男1男2 | 女男2 | |
女 | 男1女 | 男2女 |
由上表知:P(一男一女)= =
【解析】解:(1)20÷40%=50(人); 成績(jī)?yōu)橐话愕娜藬?shù)為:50﹣15﹣20﹣5=10(人)
所以答案是:50;
【考點(diǎn)精析】認(rèn)真審題,首先需要了解扇形統(tǒng)計(jì)圖(能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目以及事物的變化情況),還要掌握折線統(tǒng)計(jì)圖(能清楚地反映事物的變化情況,但是不能清楚地表示出在總體中所占的百分比)的相關(guān)知識(shí)才是答題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將一張矩形紙板按圖中虛線裁剪成九塊,其中有兩塊是邊長(zhǎng)都為的大正方形,兩塊是邊長(zhǎng)都為的小正方形,五塊是長(zhǎng)為、寬為的全等小矩形,且> .(以上長(zhǎng)度單位:cm)
(1)觀察圖形,可以發(fā)現(xiàn)代數(shù)式可以因式分解為 ;
(2)若每塊小矩形的面積為10,四個(gè)正方形的面積和為58,試求圖中所有裁剪線(虛線部分)長(zhǎng)之和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=﹣ x+m(m>0)與x軸交于點(diǎn)C,與y軸交于點(diǎn)D,以CD為邊作矩形ANCD,點(diǎn)A在x軸上.雙曲線y= 經(jīng)過(guò)點(diǎn)B,與直線CD交于點(diǎn)E,則點(diǎn)E的坐標(biāo)為( )
A.( ,﹣ )
B.(4,﹣ )
C.( ,﹣ )
D.(6,﹣1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把矩形紙片ABCD沿對(duì)角線折疊,設(shè)重疊部分為△EBD,那么下列說(shuō)法錯(cuò)誤的是( 。
A. △EBD是等腰三角形,EB=ED B. 折疊后∠ABE和∠C′BD一定相等
C. 折疊后得到的圖形是軸對(duì)稱(chēng)圖形 D. △EBA和△EDC′一定是全等三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠B=30°,BC=12.
(1)用尺規(guī)作圖的方法作AB的垂直平分線MN,分別交BC、AB于點(diǎn)M、N(保留作圖痕跡,不要求寫(xiě)作法);
(2)求第(1)題中的CM的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)O是AC邊上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)O作直線MN∥BC,設(shè)MN交∠BCA的角平分線于點(diǎn)E,交∠BCA的外角平分線于點(diǎn)F.
(1)求證:EO=FO;
(2)當(dāng)點(diǎn)O運(yùn)動(dòng)到何處時(shí),四邊形AECF是矩形?并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】完成下面的推理.
如圖,BE平分∠ABD,DE平分∠BDC,且∠α+∠β=90°,試說(shuō)明:AB∥CD.
完成推理過(guò)程:
∵BE平分∠ABD(已知),
∴∠ABD=2∠α(__________).
∵DE平分∠BDC(已知),
∴∠BDC=2∠β (__________).
∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)( __________).
∵∠α+∠β=90°(已知),
∴∠ABD+∠BDC=180°(__________).
∴AB∥CD(____________________).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com