【題目】如圖,△ABC是等邊三角形,D、E在BC邊所在的直線上,且BC2=BDCE.
(1)求∠DAE的度數(shù).
(2)求證:AD2=DBDE.
【答案】
(1)解:∵△ABC是等邊三角形,
∴∠ABC=∠ACB=60°,AB=AC=BC,
∴∠ABD=∠ACE,
∵BC2=BDCE,
∴ABAC=BDCE,
即 ,
∴△ABD∽△ECA;
∴∠DAB=∠E,
∴∠DAE=∠DAB+∠BAC+∠EAC=120°
(2)證明:∵∠DAE=∠ADB=120°,∠D=∠D,
∴△ABD∽△EAD
∴ ,
∴AD2=DBDE
【解析】(1)根據(jù)等邊三角形的性質(zhì)得到∠ABC=∠ACB=60°,利用等角的補角相等得到∠ABD=∠ACE,然后把題中已知的等式化為比例的形式,根據(jù)兩邊對應成比例,且夾角對應相等的兩三角形相似即可得證;(2)由于∠DAE=∠ADB=120°,∠D=∠D,推出△ABD∽△EAD根據(jù)相似三角形的性質(zhì)得到 ,即可得到結(jié)論.
科目:初中數(shù)學 來源: 題型:
【題目】定義[p,q]為一次函數(shù)y=px+q的特征數(shù).
(1)若特征數(shù)是[k-1,k2-1]的一次函數(shù)為正比例函數(shù),求k的值;
(2)在平面直角坐標系中,有兩點A(-m,0),B(0,-2m),且△OAB的面積為4(O為原點),若一次函數(shù)的圖象過A,B兩點,求該一次函數(shù)的特征數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為發(fā)展校園足球運動,某縣城區(qū)四校決定聯(lián)合購買一批足球運動裝備,市場調(diào)查發(fā)現(xiàn):甲、乙兩商場以同樣的價格出售同種品牌的足球隊服和足球,已知每套隊服比每個足球多50元,兩套隊服與三個足球的費用相等.經(jīng)洽談,甲商場的優(yōu)惠方案是:每購買10套隊服,送1個足球;乙商場的優(yōu)惠方案是:若購買隊服超過80套,則購買足球打八折.
(1)每套隊服和每個足球的價格分別是多少?
(2)若城區(qū)四校聯(lián)合購買100套隊服和a個足球,請用含a的式子分別表示出到甲商場和乙商場購買裝備所需的費用.
(3)假如你是本次購買任務的負責人,你認為到哪家商場購買比較合算?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,沿EF將矩形折疊,使A、C重合,AC與EF交于點H.
(1)求證:△ABE≌△AGF;
(2)若AB=6,BC=8,求△ABE的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,CE是⊙O的直徑,BD切⊙O于點D,DE∥BO,CE的延長線交BD于點A.
(1)求證:直線BC是⊙O的切線;
(2)若AE=2,tan∠DEO= ,求AO的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形紙片ABCD中,AB=4,BC=6,將△ABC沿AC折疊,使點B落在點E處,CE交AD于點F,則DF的長等于( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,□ABCD中,∠A=60°,點E、F分別在邊AD、DC上,DE=DF,且∠EBF=60°,若AE=2,FC=3,則EF的長度為_________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】按如下方法,將△ABC的三邊縮小的原來的,如圖,任取一點O,連AO、BO、CO,并取它們的中點D、E、F,得△DEF,則下列說法正確的是( 。
A. △ABC與△DEF不是位似圖形 B. =
C. △ABC與△DEF的周長比為1:2 D. △ABC與△DEF的面積比為4:1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com