【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)M的坐標(biāo)是(5,4),⊙M與y軸相切于點(diǎn)C,與x軸相交于A,B兩點(diǎn).
(1)請(qǐng)直接寫出A,B,C三點(diǎn)的坐標(biāo),并求出過(guò)這三點(diǎn)的拋物線解析式;
(2)設(shè)(1)中拋物線解析式的頂點(diǎn)為E,
求證:直線EA與⊙M相切;
(3)在拋物線的對(duì)稱軸上,是否存在點(diǎn)P,且點(diǎn)P在x軸的上方,使△PBC是等腰三角形?
如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
【答案】(1) ;(2)見解析;(3)見解析.
【解析】(1)連接AM,MC,設(shè)ME交x軸于點(diǎn)D,由M點(diǎn)的坐標(biāo)可求得MC、MD的長(zhǎng),可求得C點(diǎn)坐標(biāo),在Rt△ADM中可求得AD,則容易求得A、B坐標(biāo);
(2)由A點(diǎn)坐標(biāo)可求得拋物線解析式,則可求得ME的長(zhǎng),由勾股定理的逆定理可判定△AME為直角三角形,則可證得結(jié)論;
(3)可設(shè)P點(diǎn)坐標(biāo)為(5,t),則可表示出PB、CP、結(jié)合BC的長(zhǎng),當(dāng)△PBC為等腰三角形時(shí),則有PB=BC,CP=BC,PC=PB三種情況,分別求解即可;
(1)A,B,C的坐標(biāo)分別是A(2 ,0 ),B(8 ,0 ),C(0 ,4 );---3分
設(shè)拋物線解析式為,將(0,4)代入得即∴.
(2)證明:把化為y=(x﹣5)2,
∴E(5,﹣),
∴DE=,
∴ME=MD+DE=4+=,EA2=32+()2=,
∵MA2+EA2=52+=,ME2=,
∴MA2+EA2=ME2,
∴∠MAE=90°,
即EA⊥MA,
∴EA與⊙M相切;
(3)解:存在;點(diǎn)P坐標(biāo)為(5,4),或(5,),或(5,4+);理由如下:
由勾股定理得:BC===4,
分三種情況:
①當(dāng)PB=PC時(shí),點(diǎn)P在BC的垂直平分線上,點(diǎn)P與M重合,
∴P(5,4);
②當(dāng)BP=BC=4時(shí),如圖2所示:
∵PD===,
∴P(5,);
③當(dāng)PC=BC=4時(shí),連接MC,如圖3所示:
則∠PMC=90°,
根據(jù)勾股定理得:PM===,
∴PD=4+,
∴P(5,4+);
綜上所述:存在點(diǎn)P,且點(diǎn)P在x軸的上方,使△PBC是等腰三角形,
點(diǎn)P的坐標(biāo)為(5,4),或(5,),或(5,4+).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有一座拋物線形拱橋,在正常水位時(shí)水面AB的寬為20m,如果水位上升3m時(shí),水面CD的寬是10m.
(1)建立如圖所示的直角坐標(biāo)系,求此拋物線的解析式;
(2)現(xiàn)有一輛載有救援物資的貨車從甲地出發(fā)需經(jīng)過(guò)此橋開往乙地,已知甲地距此橋280km(橋長(zhǎng)忽略不計(jì)).貨車正以每小時(shí)40km的速度開往乙地,當(dāng)行駛1小時(shí)時(shí),忽然接到緊急通知:前方連降暴雨,造成水位以每小時(shí)0.25m的速度持續(xù)上漲(貨車接到通知時(shí)水位在CD處,當(dāng)水位達(dá)到橋拱最高點(diǎn)O時(shí),禁止車輛通行),試問(wèn):如果貨車按原來(lái)速度行駛,能否安全通過(guò)此橋?若能,請(qǐng)說(shuō)明理由;若不能,要使貨車安全通過(guò)此橋,速度應(yīng)超過(guò)每小時(shí)多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,C、D是⊙O上的點(diǎn),且OC∥BD,AD分別與BC、OC相交于 點(diǎn)E、F.若∠CBD=36°,則下列結(jié)論中不正確的是
A. ∠AOC=72° B. ∠AEC=72° C. AF=DF D. BD=20F
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=AC,點(diǎn)D是直線BC上一點(diǎn)(不與B、C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE =∠BAC,連接CE.
(1)如圖1,當(dāng)點(diǎn)D在線段BC上,如果∠BAC=90°,則∠BCE=________度;
(2)設(shè),.
①如圖2,當(dāng)點(diǎn)在線段BC上移動(dòng),則,之間有怎樣的數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;
②當(dāng)點(diǎn)在直線BC上移動(dòng),則,之間有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫出你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,數(shù)軸的單位長(zhǎng)度為1.
(1)如果點(diǎn)A,D表示的數(shù)互為相反數(shù),那么點(diǎn)B表示的數(shù)是多少?
(2)如果點(diǎn)B,D表示的數(shù)互為相反數(shù),那么圖中表示的四個(gè)點(diǎn)中,哪一點(diǎn)表示的數(shù)的絕對(duì)值最大?為什么?
(3)當(dāng)點(diǎn)B為原點(diǎn)時(shí),若存在一點(diǎn)M到A的距離是點(diǎn)M到D的距離的2倍,則點(diǎn)M所表示的數(shù)是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD中,對(duì)角線AC=6,BD=8,M、N分別是BC、CD的中點(diǎn),P是線段BD上的一個(gè)動(dòng)點(diǎn),則PM+PN的最小值是 ____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,點(diǎn) E、F分別為邊 AD、CD上的動(dòng)點(diǎn)(都與菱形的頂點(diǎn)不重合),聯(lián)結(jié) EF、BE、BF .
(1)若∠A=60°,且 AE+CF=AB,判斷△BEF 的形狀,并說(shuō)明理由;
(2)在(1)的條件下,設(shè)菱形的邊長(zhǎng)為a,求△BEF面積的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,數(shù)軸上A,B兩點(diǎn)對(duì)應(yīng)的有理數(shù)分別為10和15,點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸正方向運(yùn)動(dòng),點(diǎn)Q同時(shí)從原點(diǎn)O出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸正方向運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)當(dāng)0<t<5時(shí),用含t的式子填空:
BP=_______,AQ=_______;
(2)當(dāng)t=2時(shí),求PQ的值;
(3)當(dāng)PQ=AB時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某汽車專賣店銷售A,B兩種型號(hào)的新能源汽車.上周售出1輛A型車和3輛B型車,銷售額為96萬(wàn)元;本周已售出2輛A型車和1輛B型車,銷售額為62萬(wàn)元.
(1)求每輛A型車和B型車的售價(jià)各為多少萬(wàn)元?
(2)甲公司擬向該店購(gòu)買A,B兩種型號(hào)的新能源汽車共6輛,且A型號(hào)車不少于2輛,購(gòu)車費(fèi)不少于130萬(wàn)元,則有哪幾種購(gòu)車方案?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com