【題目】如圖,在ABC中,CD是AB邊上的中線,已知B=45,tanACB=3,AC=,

求:(1)ABC的面積;(2)sinACD的值.

【答案】(1)、6;(2)、.

【解析】

試題分析:(1)、作AHBC,根據(jù)RtACH中ACB的正切值得出AH的長(zhǎng)度,根據(jù)等腰直角ABH得出BH的長(zhǎng)度,然后計(jì)算面積;(2)、作DEAC,DFBC,根據(jù)ACD的面積求出DE的長(zhǎng)度,根據(jù)RtCDF的勾股定理求出CD的長(zhǎng)度,然后計(jì)算ACD的正弦值.

試題解析:(1)、作AHBC于H 在RtACH中,tanACB=3,AC=,CH=1,AH=3

在RtABH中,B=45°,BH=AH=3 SABC=×4×3=6

(2)、作DEAC于E,DFBC于F SACD××DE=3,DE=

在RtCDF中,CD= 在RtCDE中,sinACD=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點(diǎn)C,且ADMND,

BEMNE.

(1)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖1的位置時(shí),求證:DE=AD+BE;

(2)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖2的位置時(shí),請(qǐng)寫出DE、AD、BE之間的等量關(guān)系并加以證明.

(3)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖3的位置時(shí),試問DE、AD、BE之間又有怎樣的等量關(guān)系?請(qǐng)直接寫出結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】知識(shí)是用來為人類服務(wù)的,我們應(yīng)該把它們用于有意義的方面.下面就兩個(gè)情景請(qǐng)你作出評(píng)判.

情景一:從教室到圖書館,總有少數(shù)同學(xué)不走人行道而橫穿草坪,這是為什么呢?試用所學(xué)數(shù)學(xué)知識(shí)來說明這個(gè)問題.

情景二:AB是河流l兩旁的兩個(gè)村莊,現(xiàn)要在河邊修一個(gè)抽水站向兩村供水,問抽水站修在什么地方才能使所需的管道最短?請(qǐng)?jiān)趫D中表示出抽水站點(diǎn)P的位置,并說明你的理由:

你贊同以上哪種做法?你認(rèn)為應(yīng)用數(shù)學(xué)知識(shí)為人類服務(wù)時(shí)應(yīng)注意什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某家電生產(chǎn)企業(yè)根據(jù)市場(chǎng)調(diào)查分析,決定調(diào)整產(chǎn)品生產(chǎn)方案,準(zhǔn)備每周(按120個(gè)工時(shí)計(jì)算)生產(chǎn)空調(diào)、冰箱、彩電共360臺(tái),且彩電至少生產(chǎn)60臺(tái),已知生產(chǎn)這些家電產(chǎn)品每臺(tái)所需工時(shí)和每臺(tái)產(chǎn)值如下表:

問每周應(yīng)生產(chǎn)空調(diào)、冰箱、彩電各多少臺(tái),才能使產(chǎn)值最高?最高產(chǎn)值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一條直線上有A,B,C三點(diǎn),AB=6cmBC=2cm,點(diǎn)P,Q分別是線段AB,BC的中點(diǎn),則PQ= ______ cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),已知A(1,1),在x軸上確定點(diǎn)P,使AOP為等腰三角形,則符合條件的點(diǎn)P的個(gè)數(shù)為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若代數(shù)式mx2+5y2﹣2x2+3的值與字母x的取值無關(guān),則m的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若正比例函數(shù)y=kx的圖象在第一、三象限,則k的取值可以是( 。
A.1
B.0或1
C.±1
D.-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),直線AB∥CD,點(diǎn)P在兩平行線之間,點(diǎn)E在AB上,點(diǎn)F在CD上,連結(jié)PE,PF.

(1)∠PEB,∠PFD,∠EPF滿足的數(shù)量關(guān)系是 ,并說明理由.

(2)如圖(2),若點(diǎn)P在直線AB上側(cè)時(shí),∠PEB,∠PFD,∠EPF滿足的數(shù)量關(guān)系是 (不需說明理由)

(3)如圖(3),在圖(1)基礎(chǔ)上,PE平分∠PEB,PF平分∠PFD,若設(shè)∠PEB=x°,∠PFD=y°.則∠P=______(用x,y的代數(shù)式表示),若PE平分∠PEB,PF平分∠PFD,可得∠P,PE平分∠PEB,PF平分∠PFD,可得∠P…,依次平分下去,則∠P=______.

(4)科技活動(dòng)課上,雨軒同學(xué)制作了一個(gè)圖(5)的“飛旋鏢”,經(jīng)測(cè)量發(fā)現(xiàn)∠PAC=28°,

∠PBC=30°,他很想知道∠APB與∠ACB的數(shù)量關(guān)系,你能告訴他嗎?說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案