【題目】在△ABC中,∠A=150°.第一步:在△ABC上方確定一點A1,使∠A1BA=∠ABC,∠A1CA=∠ACB,如圖1.第二步:在△A1BC上方確定一點A2,使∠A2BA1=∠A1BA,∠A2CA1=∠A1CA,如圖2.照此下去,至多能進行( )步.
A. 3 B. 4 C. 5 D. 6
【答案】B
【解析】
由∠A的度數結合三角形內角和定理可得出∠ABC+∠ACB=30°,由∠A1BA=∠ABC、∠A1CA=∠ACB結合三角形內角和定理可求出∠A1=120°,同理可求出∠A2=90°、∠A3=60°、…、∠An=180°-30°(n+1),令∠An=0°求出n值,由三角形的內角不為0度即可得出至多能進行4步.
解:∵∠A=150°,
∴∠ABC+∠ACB=180°-∠A=30°.
∵∠A1BA=∠ABC,∠A1CA=∠ACB,
∴∠A1BC+∠A1CB=2(∠ABC+∠ACB)=60°,
∴∠A1=180°-(∠A1BC+∠A1CB)=120°.
同理,可得:∠A2=90°,∠A3=60°,…,∠An=180°-30°(n+1),
∴當n=5時,∠A5=0°,
∴至多能進行4步.
故答案為:B.
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中(AD>AB),點E是BC上一點,且DE=DA,AF⊥DE,垂足為點F,在下列結論中,不一定正確的是( )
A.△AFD≌△DCE
B.AF= AD
C.AB=AF
D.BE=AD﹣DF
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場為了吸引顧客,設計了一種促銷活動:在一個不透明的箱子里放有4個相同的小球,球上分別標有“0元”、“10元”、“20元”和“30元”的字樣.規(guī)定:顧客在本商場同一日內,每消費滿200元,就可以在箱子里先后摸出兩個球(第一次摸出后不放回),商場根據兩小球所標金額的和返還相應價格的購物券,可以重新在本商場消費,某顧客剛好消費200元.
(1)該顧客至少可得到元購物券,至多可得到元購物券;
(2)請你用畫樹狀圖或列表的方法,求出該顧客所獲得購物券的金額不低于30元的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在直角坐標系中,拋物線經過點A(0,4),B(1,0),C(5,0),其對稱軸與x軸相交于點M.
(1)求拋物線的解析式和對稱軸;
(2)在拋物線的對稱軸上是否存在一點P,使△PAB的周長最小?若存在,請求出點P的坐標;若不存在,請說明理由;
(3)連接AC,在直線AC的下方的拋物線上,是否存在一點N,使△NAC的面積最大?若存在,請求出點N的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,身高1.6米的小明從距路燈的底部(點O)20米的點A沿AO方向行走14米到點C處,小明在A處,頭頂B在路燈投影下形成的影子在M處.
(1)已知燈桿垂直于路面,試標出路燈P的位置和小明在C處,頭頂D在路燈投影下形成的影子N的位置.
(2)若路燈(點P)距地面8米,小明從A到C時,身影的長度是變長了還是變短了?變長或變短了多少米?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,⊙D與y軸相切于點C(0,4),與x軸相交于A、B兩點,且AB=6.
(1)求圓的半徑和點D的坐標;
(2)點A的坐標是 , 點B的坐標是 , sin∠ACB;
(3)求經過C、A、B三點的拋物線解析式;
(4)設拋物線的頂點為F,證明直線FA與⊙D相切.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABD和△ACE分別是等邊三角形,AB≠AC,下列結論中正確有( )個.
⑴DC=BE,⑵∠BOD=60°,⑶∠BDO=∠CEO,⑷AO平分∠DOE,⑸AO平分∠BAC
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點D、E、F分別在AB、BC、AC邊上,且BE=CF,BD=CE.
(1)求證:△DEF是等腰三角形;
(2)當∠A=40°時,求∠DEF的度數;
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com