【題目】如圖,四邊形ABCD中,E,F,G,H分別是邊AB,BC,CD,DA的中點(diǎn).請(qǐng)你添加一個(gè)條件,使四邊形EFGH為矩形,應(yīng)添加的條件是_____.
【答案】AC⊥BD
【解析】
根據(jù)三角形的中位線定理,可以證明所得四邊形的兩組對(duì)邊分別和兩條對(duì)角線平行,所得四邊形的兩組對(duì)邊分別是兩條對(duì)角線的一半,再根據(jù)平行四邊形的判定就可證明該四邊形是一個(gè)平行四邊形;所得四邊形要成為矩形,則需有一個(gè)角是直角,故對(duì)角線應(yīng)滿足互相垂直.
解:如圖,
∵E,F分別是邊AB,BC的中點(diǎn),
∴EF∥AC,EF=AC,
同理HG∥AC,HG=AC,
∴EF∥HG,EF=HG,
∴四邊形EFGH是平行四邊形;
要使四邊形EFGH是矩形,則需EF⊥FG,即AC⊥BD;
故答案為:AC⊥BD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,P是∠BAC內(nèi)的一點(diǎn),PE⊥AB,PF⊥AC,垂足分別為點(diǎn)E,F,AE=AF.求證:
(1)PE=PF;
(2)點(diǎn)P在∠BAC的平分線上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,邊長為a,點(diǎn)O是對(duì)角線AC的中點(diǎn),點(diǎn)E是BC邊上的一個(gè)動(dòng)點(diǎn),OE⊥OF交AB邊于點(diǎn)F,點(diǎn)G,H分別是點(diǎn)E,F關(guān)于直線AC的對(duì)稱點(diǎn),點(diǎn)E從點(diǎn)C運(yùn)動(dòng)到點(diǎn)B時(shí),則圖中陰影部分的面積是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC 是ABCD 的一條對(duì)角線,BE⊥AC,DF⊥AC,垂足分別為 E,F.
(1)求證:△ADF≌△CBE;
(2)求證:四邊形 DFBE 是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)暗箱中裝有紅、黃、白三種顏色的乒乓球(除顏色外其余均相同).其中白球、黃球各1個(gè),若從中任意摸出一個(gè)球是白球的概率是.
(1)求暗箱中紅球的個(gè)數(shù);
(2)先從暗箱中任意摸出一個(gè)球記下顏色后放回,再從暗箱中任意摸出一個(gè)球,求兩次摸到的球顏色不同的概率(用樹形圖或列表法求解).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,過點(diǎn)D作DE//AC,且DE:AC=1:2,連接CE、OE,連接AE交OD于點(diǎn)F.
(1)求證:OE=CD;
(2)若菱形ABCD的邊長為2,∠ABC=60°,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下邊各式,你發(fā)現(xiàn)什么規(guī)律:將你猜想到的規(guī)律用只含有一個(gè)字母的等式表示出來__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰三角形的底邊長為6,面積是36,腰的垂直平分線分別交,邊于,點(diǎn),若點(diǎn)為邊的中點(diǎn),點(diǎn)為線段上一動(dòng)點(diǎn),則周長的最小值____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一個(gè)直角三角形的兩條直角邊分別為6、8,那么這個(gè)直角三角形斜邊上的高為__;三角形的兩邊分別為3和5要使這個(gè)三角形組成直角三角形,則第三邊長是__.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com