如圖,lA,lB分別表示甲步行與乙騎車在同一路上行駛的路程S與時間t的函數(shù)關(guān)系圖象.
精英家教網(wǎng)(1)乙出發(fā)時與甲相距
 
千米.
(2)走了一段路后,乙的自行車發(fā)生故障,進行修理,所用的時間是
 
小時.
(3)乙出發(fā)后
 
小時與甲相遇.
(4)如果乙的自行車不發(fā)生故障,保持出發(fā)時的速度前進,那么乙只需幾小時與甲相遇?
分析:通過讀圖可分別得出題中問題.如
(1)lA與y軸的交點縱坐標是10,所以乙出發(fā)時與甲相距10千米.
(2)與x軸平行的部分是0.5到1.5,所以修理所用的時間是1小時.
(3)圖象的交點表示的意義就是實際中的相遇地點和時間.
(4)分別求出它們的解析式,聯(lián)立方程組求解即可.
解答:解:(1)∵lA與y軸的交點縱坐標是10,所以乙出發(fā)時與甲相距10千米.
(2)因為與x軸平行的部分是0.5到1.5,所以修理所用的時間是1小時.
(3)圖象的交點坐標是(3,22),所以乙出發(fā)后3小時與甲相遇.
(4)甲的表達式:S=4t+10
乙的表達式:S=12t
4t+10=12t
∴t=
5
4

乙只需
5
4
小時與甲相遇.
點評:主要考查利用一次函數(shù)的模型解決實際問題的能力和讀圖能力.要先根據(jù)題意列出函數(shù)關(guān)系式,再代數(shù)求值.解題的關(guān)鍵是要分析題意根據(jù)實際意義準確的列出解析式,再把對應值代入求解,并會根據(jù)圖示得出所需要的信息.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,lA,lB分別表示A步行與B騎車在同一路上行駛的路程S與時間t的關(guān)系.
(1)B出發(fā)時與A相距
 
千米.
(2)B走了一段路后,自行車發(fā)生故障,進行修理,所用的時間是
 
小時.
(3)B出發(fā)后
 
小時與A相遇.
(4)若B的自行車不發(fā)生故障,保持出發(fā)時的速度前進,
 
小時與A相遇,相遇點離B的出發(fā)點
 
千米.在圖中表示出這個相遇點C.
(5)求出A行走的路程S與時間t的函數(shù)關(guān)系式.(寫出過程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,lA、lB分別表示A步行與B騎車在同一路上行駛的路程S與時間t的關(guān)系.
(1)B出發(fā)時與A相距
 
千米.
(2)走了一段路后,自行車發(fā)生故障,進行修理,所用的時間是
 
小時.
(3)B出發(fā)后
 
小時與A相遇.
(4)求出A行走的路程S與時間t的函數(shù)關(guān)系式.(寫出過程)
(5)若B的自行車不發(fā)生故障,保持出發(fā)時的速度前進,
 
小時與A相遇,相遇點離B的出發(fā)點
 
千米.在圖中表示出這個相遇點C.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,lA,lB分別表示A步行與B騎車在同一路上行駛的路程S與時間t的關(guān)系.
(1)B出發(fā)時與A相距
10
10
千米.
(2)走了一段路后,自行車發(fā)生故障,進行修理,所用的時間是
1
1
小時.
(3)B出發(fā)后
3
3
小時與A相遇.
(4)若B的自行車不發(fā)生故障,保持出發(fā)時的速度前進,
12
13
12
13
小時與A相遇.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,lA、lB分別表示A步行與B騎車在同一路上行駛的路程S與時間的關(guān)系.
(1)B出發(fā)時與A相距
10
10
千米.
(2)B走了一段路后,自行車發(fā)生故障,進行修理,用時是
1
1
小時.
(3)B出發(fā)后
3
3
小時與A相遇.
(4)求出A行走的路程S與時間的函數(shù)關(guān)系式.
(5)若B的自行車不發(fā)生故障,保持出發(fā)時的速度前進,多少小時與A相遇?相遇點離B的出發(fā)點多少千米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,lA,lB分別表示A步行與B騎車在同一路上行駛的路程S與時間t的關(guān)系.
(1)B出發(fā)時與A相距
 
千米.
(2)走了一段路后,自行車發(fā)生故障,進行修理,所用的時間是
 
小時.
(3)B出發(fā)后
 
小時與A相遇.
(4)若B的自行車不發(fā)生故障,保持出發(fā)時的速度前進,幾小時與A相遇,相遇點離B的出發(fā)點多少千米.在圖中表示出這個相遇點C,并寫出過程.

查看答案和解析>>

同步練習冊答案