精英家教網 > 初中數學 > 題目詳情

已知:△ABC中,AB=4,AC=3,BC=5,則△ABC的面積是


  1. A.
    4
  2. B.
    5
  3. C.
    6
  4. D.
    7
C
分析:三角形中三邊長符合勾股定理的逆定理一定是直角三角形.
解答:解;∵32+42=52,∴AB2+AC2=BC2,即三角形為直角三角形,且AB,AC為直角邊,
所以三角形的面積S==×3×4=6,故選C.
點評:本題先利用勾股定理的逆定理判定出三角形中直角三角形,再利用直角三角形的面積公式求解.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

已知Rt△ABC中,∠ACB=90°,BC=5,tan∠A=
3
4
,現將△ABC繞著點C逆時針旋轉α(45°<α<135°)得到△DCE,設直線DE與直線AB相交于點P,連接CP.
精英家教網
(1)當CD⊥AB時(如圖1),求證:PC平分∠EPA;
(2)當點P在邊AB上時(如圖2),求證:PE+PB=6;
(3)在△ABC旋轉過程中,連接BE,當△BCE的面積為
25
4
3
時,求∠BPE的度數及PB的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖所示,已知在△ABC中,AB=AC,∠BAD=β,且AD=AE,求∠EDC.(用β表示)

查看答案和解析>>

科目:初中數學 來源: 題型:

8、如圖,已知在△ABC中,AD垂直平分BC,AC=EC,點B、D、C、E在同一直線上,則下列結論:①AB=AC;②∠CAE=∠E;③AB+BD=DE;④∠BAC=∠ACB.正確的個數有( 。﹤.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知在△ABC中,有一個角為60°,S△ABC=10
3
,周長為20,則三邊長分別為
 

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知在△ABC中,點D、E分別是AB、AC上的點,以AE為直徑的⊙O與過B點的⊙P精英家教網外切于點D,若AC和BC邊的長是關于x的方程x2-(AB+4)x+4AB+8=0的兩根,且25BC•sinA=9AB,
(1)求△ABC三邊的長;
(2)求證:BC是⊙P的切線;
(3)若⊙O的半徑為3,求⊙P的半徑.

查看答案和解析>>

同步練習冊答案