【題目】如圖,為了對(duì)一顆傾斜的古杉樹(shù)AB進(jìn)行保護(hù),需測(cè)量其長(zhǎng)度:在地面上選取一點(diǎn)C,測(cè)得∠ACB=45°,AC=24m,∠BAC=66.5°,(參考數(shù)據(jù): ≈1.414,sin66.5°≈0.92,cos66.5°≈0.40,tan66.5°≈2.30).則這顆古杉樹(shù)AB的長(zhǎng)約為( )
A.7.27
B.16.70
C.17.70
D.18.18
【答案】D
【解析】解:過(guò)B點(diǎn)作BD⊥AC于D. ∵∠ACB=45°,∠BAC=66.5°,
∴在Rt△ADB中,AD= ,
在Rt△CDB中,CD=BD,
∵AC=AD+CD=24m,
∴ +BD=24,
解得BD≈17m.
AB= ≈18.18m.
答:這棵古杉樹(shù)AB的長(zhǎng)度大約為18.18m.
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】三角板是學(xué)習(xí)數(shù)學(xué)的重要工具,將一副三角板中的兩塊直角三角板的直角頂點(diǎn)按如圖方式疊放在一起,當(dāng)且點(diǎn)在直線(xiàn)的上方時(shí),解決下列問(wèn)題:(友情提示:,,.
(1)①若,則的度數(shù)為 ;
②若,則的度數(shù)為 ;
(2)由(1)猜想與的數(shù)量關(guān)系,并說(shuō)明理由.
(3)這兩塊三角板是否存在一組邊互相平行?若存在,請(qǐng)直接寫(xiě)出的角度所有可能的值(不必說(shuō)明理由);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在下列條件中:①∠A +∠B=∠C;②∠A:∠B:∠C=l:2:3;③∠A=90°-∠B;④∠A=∠B=∠C中,能確定△ABC是直角三角形的條件有( )
A. 1個(gè); B. 2個(gè); C. 3個(gè); D. 4個(gè);
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將長(zhǎng)方形紙片ABCD沿折痕EF對(duì)折,使點(diǎn)C與點(diǎn)A重合,點(diǎn)D落在點(diǎn)G處,如果此時(shí)∠BAF剛好等于30°,AD=6,求△AEF的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下表是小紅在某個(gè)路口統(tǒng)計(jì)20分鐘各種車(chē)輛通過(guò)情況制成的統(tǒng)計(jì)表,其中空格處的字跡已模糊,但小紅還記得7:50~8:00時(shí)段內(nèi)的電瓶車(chē)車(chē)輛數(shù)與8:00~8:10時(shí)段內(nèi)的貨車(chē)車(chē)輛數(shù)之比是7∶2.
電瓶車(chē) | 公交車(chē) | 貨車(chē) | 小轎車(chē) | 合計(jì) | |
7:50~8:00 | 5 | 63 | 133 | ||
8:00~8:10 | 5 | 45 | 82 | ||
合計(jì) | 67 | 30 | 108 |
(1)若在7:50~8:00時(shí)段,經(jīng)過(guò)的小轎車(chē)數(shù)量正好是電瓶車(chē)數(shù)量的,求這個(gè)時(shí)段內(nèi)的電瓶車(chē)通過(guò)的車(chē)輛數(shù);
(2)根據(jù)上述表格數(shù)據(jù),求在7:50~8:00和8:00~8:10兩個(gè)時(shí)段內(nèi)電瓶車(chē)和貨車(chē)的車(chē)輛數(shù);
(3)據(jù)估計(jì),在所調(diào)查的7:50~8:00時(shí)段內(nèi),每增加1輛公交車(chē),可減少8輛小轎車(chē)行駛,為了使該時(shí)段內(nèi)小轎車(chē)流量減少到比公交車(chē)多13輛,則在該路口應(yīng)再增加幾輛公交車(chē)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一副三角板按如圖擺放,其中△ABC為含有45度角的三角板,直線(xiàn)AD是等腰直角三角形ABC的對(duì)稱(chēng)軸,且將△ABC分成兩個(gè)等腰直角三角形,DM、DN分別與邊AB、AC交于E、F兩點(diǎn),有下列四個(gè)結(jié)論:①BD=AD=CD②△AED≌△CFD③BE+CF=EF④S四邊形AEDF=AB2.其中正確結(jié)論是_____(填寫(xiě)正確序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A,B,C,D在⊙O上, =2 , =3 ,延長(zhǎng)BC,AD交于點(diǎn)P,若∠CBD=18°,則∠P的大小為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在“雙十二”期間,A,B兩個(gè)超市開(kāi)展促銷(xiāo)活動(dòng),活動(dòng)方式如下:
A超市:購(gòu)物金額打9折后,若超過(guò)2000元再優(yōu)惠300元;
B超市:購(gòu)物金額打8折.
某學(xué)校計(jì)劃購(gòu)買(mǎi)某品牌的籃球做獎(jiǎng)品,該品牌的籃球在A,B兩個(gè)超市的標(biāo)價(jià)相同.根據(jù)商場(chǎng)的活動(dòng)方式:
(1)若一次性付款4200元購(gòu)買(mǎi)這種籃球,則在B商場(chǎng)購(gòu)買(mǎi)的數(shù)量比在A商場(chǎng)購(gòu)買(mǎi)的數(shù)量多5個(gè).請(qǐng)求出這種籃球的標(biāo)價(jià);
(2)學(xué)校計(jì)劃購(gòu)買(mǎi)100個(gè)籃球,請(qǐng)你設(shè)計(jì)一個(gè)購(gòu)買(mǎi)方案,使所需的費(fèi)用最少.(直接寫(xiě)出方案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,平面直角坐標(biāo)系中,直線(xiàn)y=kx+b與x軸交于點(diǎn)A(6,0),與y軸交于點(diǎn)B,與直線(xiàn)y=2x交于點(diǎn)C(a,4).
(1)求點(diǎn)C的坐標(biāo)及直線(xiàn)AB的表達(dá)式;
(2)如圖2,在(1)的條件下,過(guò)點(diǎn)E作直線(xiàn)l⊥x軸于點(diǎn)E,交直線(xiàn)y=2x于點(diǎn)F,交直線(xiàn)y=kx+b于點(diǎn)G,若點(diǎn)E的坐標(biāo)是(4,0).
①求△CGF的面積;
②直線(xiàn)l上是否存在點(diǎn)P,使OP+BP的值最?若存在,直接寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由;
(3)若(2)中的點(diǎn)E是x軸上的一個(gè)動(dòng)點(diǎn),點(diǎn)E的橫坐標(biāo)為m(m>0),當(dāng)點(diǎn)E在x軸上運(yùn)動(dòng)時(shí),探究下列問(wèn)題:
當(dāng)m取何值時(shí),直線(xiàn)l上存在點(diǎn)Q,使得以A,C,Q為頂點(diǎn)的三角形與△AOC全等?請(qǐng)直接寫(xiě)出相應(yīng)的m的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com