【題目】如圖,在ABCD中,BC2AB4,點(diǎn)E,F分別是BC,AD的中點(diǎn).

(1)求證:△ABE≌△CDF;

(2)當(dāng)四邊形AECF為菱形時(shí),求出該菱形的面積.

【答案】見試題解析

【解析】

試題(1)由□ABCD可得AB=CD,BC=AD,∠ABC=∠CDA,再結(jié)合點(diǎn)E、F分別是BC、AD的中點(diǎn)即可證得結(jié)論;

2)當(dāng)四邊形AECF為菱形時(shí),可得△ABE為等邊三角形,根據(jù)等邊三角形的性質(zhì)即可求得結(jié)果。

□ABCD中,AB=CD,

∴BC=AD,∠ABC=∠CDA

∵BE=EC=BC,AF=DF=AD,

∴BE=DF

∴△ABE≌△CDF

2)當(dāng)四邊形AECF為菱形時(shí),△ABE為等邊三角形,

四邊形ABCD的高為,

菱形AECF的面積為2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A1的坐標(biāo)為(0,1),點(diǎn)A2x軸的正半軸上,且∠A1A2O30°,過點(diǎn)A2A2A3A1A2,交y軸于點(diǎn)A3;過點(diǎn)A3A3A4A2A3,交x軸于點(diǎn)A4;過點(diǎn)A4A4A5A3A4,交y軸于點(diǎn)A5;……;按此規(guī)律進(jìn)行下去,則點(diǎn)A2021的坐標(biāo)為( )

A.(0,31011)B.(﹣310110)C.(0,31010)D.(﹣31010,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】茶葉是安徽省主要經(jīng)濟(jì)作物之一,2020年新茶上市期間,某茶廠為獲得最大利益,根據(jù)市場行情,把新茶價(jià)格定為400/kg,并根據(jù)歷年的相關(guān)數(shù)據(jù)整理出第x天(1x15,且x為整數(shù))制茶成本(含采摘和加工)和制茶量的相關(guān)信息如下表.假定該茶廠每天制作和銷售的新茶沒有損失,且能在當(dāng)天全部售出(當(dāng)天收入=日銷售額-日制茶成本)

制茶成本(元/kg

150+10x

制茶量(kg

40+4x

1)求出該茶廠第10天的收入;

2)設(shè)該茶廠第x天的收入為y(元).試求出yx之間的函數(shù)關(guān)系式,并求出y的最大值及此時(shí)x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,BA=BC,以AB為直徑的⊙O分別交AC,BC于點(diǎn)D,E,BC的延長線與⊙O的切線AF交于點(diǎn)F

(1)求證:∠ABC=2CAF;

(2)若AC=2,CEEB=1:4,求CEAF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,,點(diǎn)邊上的一個(gè)動(dòng)點(diǎn),將四邊形沿直線折疊,得到四邊形,點(diǎn)、的對應(yīng)點(diǎn)分別為點(diǎn)、.直線于點(diǎn)

1)求證:;

2)連接,已知

如圖,當(dāng),時(shí),求的長度;

如圖,當(dāng)四邊形為菱形時(shí),請直接寫出的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)的圖象與x軸負(fù)半軸交于點(diǎn)A-1,0),與y軸正半軸交與點(diǎn)B,頂點(diǎn)為P,且OB=3OA,一次函數(shù)y=kx+b的圖象經(jīng)過A、B

(1) 求一次函數(shù)解析式;

(2)求頂點(diǎn)P的坐標(biāo);

(3)平移直線AB使其過點(diǎn)P,如果點(diǎn)M在平移后的直線上,且,求點(diǎn)M坐標(biāo);

(4)設(shè)拋物線的對稱軸交x軸與點(diǎn)E,聯(lián)結(jié)APy軸與點(diǎn)D,若點(diǎn)Q、N分別為兩線段PE、PD上的動(dòng)點(diǎn),聯(lián)結(jié)QD、QN,請直接寫出QD+QN的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 有一種用“☆”定義的新運(yùn)算,對于任意實(shí)數(shù)a,b,都有abb2+2a+1.例如7442+2×7+131

1)已知﹣m3的結(jié)果是﹣4,則m   

2)將兩個(gè)實(shí)數(shù)2nn2用這種新定義“☆”加以運(yùn)算,結(jié)果為9,則n的值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△OAB中,OAOB,CAB中點(diǎn),以O為圓心,OC長為半徑作圓,AOO交于點(diǎn)E,直線OBO交于點(diǎn)FD,連接EFCF,CFOA交于點(diǎn)G

1)求證:直線AB的切線;

2)求證:ODEGOGEF;

3)若AB4BD,求sinA的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為6,點(diǎn)EBC的中點(diǎn),連接AE與對角線BD交于點(diǎn)G,連接CG并延長,交AB于點(diǎn)F,連接DECF于點(diǎn)H,連接AH.以下結(jié)論:①CFDE;②;③ADAH;④GH,其中正確結(jié)論的序號(hào)是__________

查看答案和解析>>

同步練習(xí)冊答案