【題目】 有一種用“☆”定義的新運(yùn)算,對(duì)于任意實(shí)數(shù)a,b,都有abb2+2a+1.例如7442+2×7+131

1)已知﹣m3的結(jié)果是﹣4,則m   

2)將兩個(gè)實(shí)數(shù)2nn2用這種新定義“☆”加以運(yùn)算,結(jié)果為9,則n的值是多少?

【答案】17;(22

【解析】

1)利用題中新定義列出方程,求出方程的解即可得到m的值;

2)利用新定義分兩種情況列出方程,求出方程的解即可得到n的值.

解:(1)根據(jù)題意可得:﹣m☆3322m+1=﹣4,

解得:m7;

故答案為:7;

2)當(dāng)2n☆(n2)9時(shí),

(n2)2+4n+19,

解得:n2或﹣2,

當(dāng)(n2)☆2n=9時(shí),

4n2+2(n2)+19,

解得:n=﹣2,

n=﹣22

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩條拋物線的頂點(diǎn)相同.

1)求拋物線的解析式;

2)點(diǎn)是拋物找在第四象限內(nèi)圖象上的一動(dòng)點(diǎn),過點(diǎn)軸,為垂足,求的最大值;

3)設(shè)拋物線的頂點(diǎn)為點(diǎn),點(diǎn)的坐標(biāo)為,問在的對(duì)稱軸上是否存在點(diǎn),使線段繞點(diǎn)順時(shí)針旋轉(zhuǎn)90°得到線段,且點(diǎn)恰好落在拋物線上?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線y4x4x軸,y軸分別交于點(diǎn)A,B,點(diǎn)A在拋物線yax2bx3aa0)上,將點(diǎn)B向右平移3個(gè)單位長(zhǎng)度,得到點(diǎn)C

1)拋物線的頂點(diǎn)坐標(biāo)為 (用含a的代數(shù)式表示)

2)若a1,當(dāng)t1≤xt時(shí),函數(shù)yax2bx3aa0)的最大值為y1,最小值為y2,且y1y22,求t的值;

3)若拋物線與線段BC恰有一個(gè)公共點(diǎn),結(jié)合函數(shù)圖象,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,BC2AB4,點(diǎn)E,F分別是BCAD的中點(diǎn).

(1)求證:△ABE≌△CDF;

(2)當(dāng)四邊形AECF為菱形時(shí),求出該菱形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 某射擊隊(duì)教練為了了解隊(duì)員訓(xùn)練情況,從隊(duì)員中選取甲、乙兩名隊(duì)員進(jìn)行射擊測(cè)試,相同條件下各射靶5次,成績(jī)統(tǒng)計(jì)如表:

命中環(huán)數(shù)

6

7

8

9

10

甲命中相應(yīng)環(huán)數(shù)的次數(shù)

0

1

3

1

0

乙命中相應(yīng)環(huán)數(shù)的次數(shù)

2

0

0

2

1

關(guān)于以上數(shù)據(jù),下列說法錯(cuò)誤的是( 。

A.甲命中環(huán)數(shù)的中位數(shù)是8環(huán)

B.乙命中環(huán)數(shù)的眾數(shù)是9環(huán)

C.甲的平均數(shù)和乙的平均數(shù)相等

D.甲的方差小于乙的方差

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,扇形OAB的半徑為4,∠AOB90°P是半徑OB上一動(dòng)點(diǎn),Q上一動(dòng)點(diǎn).

1)連接AQ、BQ、PQ,則∠AQB的度數(shù)為   ;

2)當(dāng)POB中點(diǎn),且PQOA時(shí),求的長(zhǎng);

3)如圖2,將扇形OAB沿PQ對(duì)折,使折疊后的恰好與半徑OA相切于點(diǎn)C.若OP3,求點(diǎn)O到折痕PQ的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,過點(diǎn)B6,0)的直線AB與直線OA相交于點(diǎn)A4,2),動(dòng)點(diǎn)M在線段OA和射線AC上運(yùn)動(dòng).

1)求直線AB的解析式.

2)求△OAC的面積.

3)是否存在點(diǎn)M,使△OMC的面積是△OAC的面積的?若存在求出此時(shí)點(diǎn)M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊙O的弦,BC⊙O于點(diǎn)B,AD⊥BC,垂足為D,OA⊙O的半徑,且OA=3.

(1)求證:AB平分∠OAD;

(2)若點(diǎn)E是優(yōu)弧 上一點(diǎn),且∠AEB=60°,求扇形OAB的面積.(計(jì)算結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABOC的頂點(diǎn)A0,2),點(diǎn)B(﹣4,0),點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)C在第一象限,若將△AOB沿x軸向右運(yùn)動(dòng)得到△EFG(點(diǎn)A、O、B分別與點(diǎn)EF、G對(duì)應(yīng)),運(yùn)動(dòng)速度為每秒2個(gè)單位長(zhǎng)度,邊EFOC于點(diǎn)P,邊EGOA于點(diǎn)Q,設(shè)運(yùn)動(dòng)時(shí)間為t0t2)秒.

1)在運(yùn)動(dòng)過程中,線段AE的長(zhǎng)度為   (直接用含t的代數(shù)式表示);

2)若t1,求出四邊形OPEQ的面積S;

3)在運(yùn)動(dòng)過程中,是否存在四邊形OPEQ為菱形?若存在,直接寫出此時(shí)四邊形OPEQ的面積;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案