關(guān)于二次函數(shù)y=x2+4x-7的最大(小)值敘述正確的是 (    )

      A.當(dāng)x=2時,函數(shù)有最大值

      B.當(dāng)x=2時,函數(shù)有最小值

      C.當(dāng)x=-2時,函數(shù)有最大值

      D.當(dāng)x=-2時,函數(shù)有最小值


D[提示:y=x2+4x-7=(x+2)2-11.∵a>0,∴函數(shù)有最小值.當(dāng)x=-2時,函數(shù)y=(x+2)2-11的最小值是-11.]


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


作為寧波市政府民生實事之一的公共自行車建設(shè)工作已基本完成,某部門對今年4月份中的7天進行了公共自行車日租車量的統(tǒng)計,結(jié)果如下:

(1)求這7天日租車量的眾數(shù)、中位數(shù)和平均數(shù);

(2)用(1)中的平均數(shù)估計4月份(30天)共租車多少萬車次;

(3)市政府在公共自行車建設(shè)項目中共投入9 600萬元,估計2014年共租車3 200萬車次,每車次平均收入租車費0.1元.求2014年租車費收入占總投入的百分率(精確到0.1%).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


拋物線y=2(x-)2的頂點坐標(biāo)是    ,對稱軸是    ,與x軸的交點是    ,與y軸的交點是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


將拋物線y=x2向左平移4個單位后,再向下平移2個單位,則此時拋物線的解析式是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


已知拋物線y=ax2+bx+c經(jīng)過A,B,C三點,當(dāng)x≥0時,其圖象如圖所示.

 (1)求拋物線的解析式,寫出拋物線的頂點坐標(biāo);

 (2)畫出拋物線y=ax2+bx+c當(dāng)x<0時的圖象;

(3)利用拋物線y=ax2+bx+c,寫出x為何值時,y>0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


把二次函數(shù)y=2x2-4x+5化成y=a(x-h(huán))2+k的形式是    ,其圖象開口方向    ,頂點坐標(biāo)是    ,當(dāng)x=    時,函數(shù)y有最    值,當(dāng)x    時,y隨x的增大而減。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


南博汽車城銷售某種型號的汽車,每輛車的進貨價為25萬元.市場調(diào)研表明:當(dāng)銷售價為29萬元時,平均每周能售出8輛,而當(dāng)銷售價每降低0.5萬元時,平均每周能多售出4輛,如果設(shè)每輛汽車降價x萬元,每輛汽車的銷售利潤為y萬元.(銷售利潤=銷售價-進貨價)

  (1)求y與x的函數(shù)關(guān)系式,在保證商家不虧本的前提下,寫出x的取值范圍;

  (2)假設(shè)這種汽車平均每周的銷售利潤為z萬元,試寫出z與x之間的函數(shù)關(guān)系式;

  (3)當(dāng)每輛汽車的定價為多少萬元時,平均每周的銷售利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖2-128所示的是二次函數(shù)y=ax2+bx+c的圖象,則一次函數(shù)y=ax-b的圖象不經(jīng)過    (    )

         A.第一象限    B.第二象限

         C.第三象限    D.第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


.如圖3-36所示,在同心圓中,大圓的弦AB交小圓于C,D,已知AB=2CD,AB的弦心距等于CD長的一半,那么大圓與小圓的半徑之比是    (    )

       A.3∶2                    B.∶2

       C.                D.5∶4

查看答案和解析>>

同步練習(xí)冊答案