【題目】閱讀材料:各類方程的解法

求解一元一次方程,根據(jù)等式的基本性質(zhì),把方程轉(zhuǎn)化為的形式:求解二元一次方程組,把它轉(zhuǎn)化為一元一次方程來解;類似的,求解三元一次方程組,把它轉(zhuǎn)化為二元一次方程組來解;求解一元二次方程,把它轉(zhuǎn)化為兩個一元一次方程來解:求解分式方程,把它轉(zhuǎn)化為整式方程來解,由于“去分母”可能產(chǎn)生增根,所以解分式方程必須檢驗.各類方程的解法不盡相同,但是它們有一個共同的基本數(shù)學(xué)思想一一轉(zhuǎn)化,把未知轉(zhuǎn)化為已知.用“轉(zhuǎn)化”的數(shù)學(xué)思想,我們還可以解一些新的方程.例如,一元三次方程,可以通過因式分解把它轉(zhuǎn)化為,解方程,可得方程的解.利用上述材料給你的啟示,解下列方程;

1

2

【答案】1;(2x=3

【解析】

1)因式分解多項式,然后得結(jié)論;

2)根據(jù)題目中的方程,兩邊同時平方轉(zhuǎn)化為有理方程,然后解方程即可,注意,最后要檢驗,所得的根是否使得原無理方程有意義.

解:(1)∵

,

,

,,,

解得:;

2)∵,

,

,

解得:x1=-1x2=3,

經(jīng)檢驗,x=3是原無理方程的根,x=-1不是原無理方程的根,

即方程,的解是x=3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種蔬菜的銷售單價y1與銷售月份x之間的關(guān)系如圖(1)所示,成本y2與銷售月份之間的關(guān)系如圖(2)所示(圖(1)的圖象是線段圖(2)的圖象是拋物線)

1)分別求出y1、y2的函數(shù)關(guān)系式(不寫自變量取值范圍);

2)通過計算說明:哪個月出售這種蔬菜,每千克的收益最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P是正方形ABCD內(nèi)一點,點P到點A,BD的距離分別為1,2,.△ADP沿點A旋轉(zhuǎn)至ABP,連接PP,并延長APBC相交于點Q.

(1)求證:APP是等腰直角三角形;

(2)BPQ的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,分別以△ABC的邊AB、AC為一邊,向外作正方形ABEF和正方形AGHC像這樣的兩個正方形稱為△ABC依伴正方形

1)如圖1,連接BGCF相交于點P,求證:BGCFBGCF;

2)如圖2,點DBC的中點,兩個依伴正方形的中心分別為O1,O2連結(jié)O1D,O2D,O1O2:,判斷△DO1O2的形狀并說明由;

3)如圖2,若AB6,AC,∠BAC60°,求O1O2的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點C是線段AB上一點,ACABBC為⊙O的直徑.

1)在圖1直徑BC上方的圓弧上找一點P,使得PAPB;(用尺規(guī)作圖,保留作圖痕跡,不要求寫作法)

2)連接PA,求證:PA是⊙O的切線;

3)在(1)的條件下,連接PC、PB,∠PAB的平分線分別交PC、PB于點DE.求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,以點為圓心,以3為半徑的圓,分別交軸正半軸于點,交軸正半軸于點,過點的直線交軸負(fù)半軸于點

1)求兩點的坐標(biāo);

2)求證:直線的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD內(nèi)接于⊙O,AC為對角線,∠ACB=∠ACD

1)如圖1,求證:ABAD;

2)如圖2,點EAB弧上,DEAC于點F,連接BEBEDF,求證:DFDC;

3)如圖3,在(2)的條件下,點GBC弧上,連接DG,交CE于點H,連接GE,GF,若DEBC,EGGH5,SDFG9,求BC邊的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知是等腰直角三角形,,點DBC的中點作正方形DEFG,使點A、C分別在DGDE上,連接AEBG

試猜想線段BGAE的數(shù)量關(guān)系是______;

將正方形DEFG繞點D逆時針方向旋轉(zhuǎn)

判斷中的結(jié)論是否仍然成立?請利用圖2證明你的結(jié)論;

,當(dāng)AE取最大值時,求AF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)yax2+bx+ca≠0)的圖象的一部分,給出下列命題:①a+b+c0;②b2a;③方程ax2+bx+c0的兩根分別為-31;④a2b+c≥0,其中正確的命題是( 。

A.①②③B.①④C.①③D.①③④

查看答案和解析>>

同步練習(xí)冊答案