若an+1•an-2=a5,且a≠1,則n等于


  1. A.
    3
  2. B.
    4
  3. C.
    5
  4. D.
    6
A
分析:根據(jù)同底數(shù)冪的乘法法則,可得關(guān)于n的方程,解出即可.
解答:由題意得,an+1•an-2=a2n-1=a5,
∵a≠1,
∴2n-1=5,
解得:n=3.
故選A.
點評:本題考查了同底數(shù)冪的乘法,屬于基礎(chǔ)題,解答本題的關(guān)鍵是掌握同底數(shù)冪的乘法法則.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)在反比例函數(shù)y=
10x
(x>0)的圖象上,有一系列點A1、A2、A3、…、An、An+1,若A1的橫坐標為2,且以后每點的橫坐標與它前一個點的橫坐標的差都為2.現(xiàn)分別過點A1、A2、A3、…、An、An+1作x軸與y軸的垂線段,構(gòu)成若干個矩形如圖所示,將圖中陰影部分的面積從左到右依次記為S1,S2,S3,…,Sn,則S1=
 
,S1+S2+S3+…+Sn=
 
.(用n的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

請閱讀材料:
①一般地,n個相同的因數(shù)a相乘:記為an,如23=8,此時,指數(shù)3叫做以2為底8的對數(shù),記為log28log=3(即log28=3).  
②一般地,若an=b(a>0且a≠1,b>0),則指數(shù)n叫做以a為底b的對數(shù),記為logab(即logab=n),如34=81,則指數(shù)4叫做以3為底81的對數(shù),記為log381(即log381=4).
(1)計算下列各對數(shù)的值:
log24=
2
2
;   log216=
4
4
;    log264=
6
6

(2)觀察(1)題中的三數(shù)4、16、64之間存在的關(guān)系式是
4×16=64
4×16=64
,那么log24、log216、log264存在的關(guān)系式是
log24+log216=log264
log24+log216=log264

(3)由(2)題的結(jié)果,你能歸納出一個一般性的結(jié)論嗎?
logaM+logaN=
logaMN
logaMN
  (a>0且a≠1,M>0,N>0)
(4)請你運用冪的運算法則am•an=am+n以及上述中對數(shù)的定義證明(3)中你所歸納的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知拋物線拋物線y n=-(x-an)2+ann為正整數(shù),且0<a1<a2<…<an)與x軸的交點為An-1(bn-1,0)和An(bn,0),當n=1時,第1條拋物線y1=-(x-a1)2+a1x軸的交點為A0(0,0)和A1b1,0),其他依此類推.

(1)求a1,b1的值及拋物線y2的解析式;

(2)拋物線y3的頂點坐標為(     ,     );

     依此類推第n條拋物線yn的頂點坐標為(       ,      );

     所有拋物線的頂點坐標滿足的函數(shù)關(guān)系是                  ;

(3)探究下列結(jié)論:

     ①若用An-1An表示第n條拋物線被x軸截得得線段長,直接寫出A0A1的值,并求出An-1An

②是否存在經(jīng)過點A(2,0)的直線和所有拋物線都相交,且被每一條拋物線截得得線段的長度都相等?若存在,直接寫出直線的表達式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

(閱讀材料)如果一個數(shù)列從第二項起,每一項與它的前一項的差等于同一個常數(shù),這個數(shù)列就叫做等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,公差常用字母d表示.比如,數(shù)列a1,a2,a3,a4,a5,a6,…,an(an表示第n項),若有a2-a1=a3-a2=a4-a3=…an-an-1=d,d是個常數(shù),則就可以說這個數(shù)列是等差數(shù)列,其中的和記為sn.由等差數(shù)列的定義可得a2=a1+d,a3=a2+d=a1+2d,a4=a3+d=a1+3d,…,an=a1+(n-1)d,所以sn=a1+a2+a3+a4+…+an=a1+a1+d+a1+2d+a1+3d+…+a1+(n-1)d=na1+[d+2d+3d+…+(n-1)d]=na1+數(shù)學公式,求:
(1)利用數(shù)學公式計算:3,5,7,9,11,13,…103這幾個數(shù)的和.
(2)若數(shù)列a1,a2,a3,a4,a5,a6,…,an為等差數(shù)列,公差為d,記b1=a1+a2,b2=a3+a4,b3=a5+a6,b4=a7+a8,…b7=a13+a14,請問b1,b2,b3,b4,b5,b6,b7是等差數(shù)列嗎?若是,請寫出理由,并求出公差.

查看答案和解析>>

同步練習冊答案