【題目】已知一元二次方程x2﹣4x+2=0兩根為x1、x2,則x1x2=( )
A.﹣4B.4C.﹣2D.2
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,△ABC是邊長3cm的等邊三角形,動點P、Q同時從A、B兩點出發(fā),分別沿AB、BC方向勻速移動,它們的速度都是1cm/s,當(dāng)點P到達(dá)點B時,P、Q兩點停止運動,設(shè)點P的運動時間為t(s).
(1)當(dāng)動點P、Q同時運動2s時,則BP=cm,BQ=cm.
(2)當(dāng)動點P、Q同時運動t(s)時,分別用含有t的式子表示;BP=cm,BQ=cm.
(3)當(dāng)t為何值時,△PBQ是直角三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點P(m+3,m-1)在x軸上,則點P的坐標(biāo)為( )
A. (0,-2) B. (2,0) C. (4,0) D. (0,-4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)ω是一個平面圖形,如果用直尺和圓規(guī)經(jīng)過有限步作圖(簡稱尺規(guī)作圖),畫出一個正方形與ω的面積相等(簡稱等積),那么這樣的等積轉(zhuǎn)化稱為ω的“化方”.
(1)閱讀填空
如圖①,已知矩形ABCD,延長AD到E,使DE=DC,以AE為直徑作半圓.延長CD交半圓于點H,以DH為邊作正方形DFGH,則正方形DFGH與矩形ABCD等積.
理由:連接AH,EH.
∵AE為直徑,∴∠AHE=90°,∴∠HAE+∠HEA=90°.
∵DH⊥AE,∴∠ADH=∠EDH=90°
∴∠HAD+∠AHD=90°
∴∠AHD=∠HED,∴△ADH∽ .
∴,即DH2=AD×DE.
又∵DE=DC
∴DH2= ,即正方形DFGH與矩形ABCD等積.
(2)操作實踐
平行四邊形的“化方”思路是,先把平行四邊形轉(zhuǎn)化為等積的矩形,再把矩形轉(zhuǎn)化為等積的正方形.
如圖②,請用尺規(guī)作圖作出與ABCD等積的矩形(不要求寫具體作法,保留作圖痕跡).
(3)解決問題三角形的“化方”思路是:先把三角形轉(zhuǎn)化為等積的 (填寫圖形名稱),再轉(zhuǎn)化為等積的正方形.
如圖③,△ABC的頂點在正方形網(wǎng)格的格點上,請作出與△ABC等積的正方形的一條邊(不要求寫具體作法,保留作圖痕跡,不通過計算△ABC面積作圖).
(4)拓展探究
n邊形(n>3)的“化方”思路之一是:把n邊形轉(zhuǎn)化為等積的n﹣1邊形,…,直至轉(zhuǎn)化為等積的三角形,從而可以化方.
如圖④,四邊形ABCD的頂點在正方形網(wǎng)格的格點上,請作出與四邊形ABCD等積的三角形(不要求寫具體作法,保留作圖痕跡,不通過計算四邊形ABCD面積作圖).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有理數(shù)的絕對值一定是( )
A.正數(shù)
B.負(fù)數(shù)
C.零或正數(shù)
D.零或負(fù)數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一平面內(nèi)有三條直線,如果要使其中兩條且只有兩條直線平行,那么它們( )
A. 沒有交點 B. 只有一個交點
C. 有兩個交點 D. 有三個交點
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com