【題目】如圖,在ABCD中,E是AD上一點(diǎn),延長CE到點(diǎn)F,使∠FBC=∠DCE.

(1)求證:∠D=∠F;
(2)用直尺和圓規(guī)在AD上作出一點(diǎn)P,使△BPC∽△CDP(保留作圖的痕跡,不寫作法).

【答案】
(1)

證明:BE交AD于G,如圖,

∵四邊形ABCD為平行四邊形,

∴AD∥BC,

∴∠FBC=∠FGE,

而∠FBC=∠DCE,

∴∠FGE=∠DCE,

∵∠GEF=∠DEC,

∴∠D=∠F


(2)

解:解:如圖,點(diǎn)P為所作.


【解析】(1)BE交AD于G,先利用AD∥BC得到∠FBC=∠FGE,加上∠FBC=∠DCE,所以∠FGE=∠DCE,然后根據(jù)三角形內(nèi)角和定理易得∠D=∠F;(2)分別作BC和BF的垂直平分線,它們相交于點(diǎn)O,然后以O(shè)為圓心,OC為半徑作△BCF的外接圓⊙O,⊙O交AD于P,連結(jié)BP、CP,則根據(jù)圓周角定理得到∠F=∠BPC,而∠F=∠D,所以∠D=∠BPC,接著可證明∠PCD=∠APB=∠PBC,于是可判斷△BPC∽△CDP.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,AC的垂直平分線分別與AC,BC及AB的延長線相交于點(diǎn)D,E,F(xiàn),⊙O是△BEF的外接圓,∠EBF的平分線交EF于點(diǎn)G,交⊙O于點(diǎn)H,連接BD、FH.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某校九年級(jí)學(xué)生的身高情況,隨機(jī)抽取部分學(xué)生的身高進(jìn)行調(diào)查,利用所得數(shù)據(jù)繪成如圖統(tǒng)計(jì)圖表:
頻數(shù)分布表

身高分組

頻數(shù)

百分比

x<155

5

10%

155≤x<160

a

20%

160≤x<165

15

30%

165≤x<170

14

b

x≥170

6

12%

總計(jì)

100%


(1)填空:a= , b=;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)該校九年級(jí)共有600名學(xué)生,估計(jì)身高不低于165cm的學(xué)生大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了讓書籍開拓學(xué)生的視野,陶冶學(xué)生的情操,向陽中學(xué)開展了“五個(gè)一”課外閱讀活動(dòng),為了解全校學(xué)生課外閱讀情況,抽樣調(diào)查了50名學(xué)生平均每天課外閱讀時(shí)間(單位:min),將抽查得到的數(shù)據(jù)分成5組,下面是尚未完成的頻數(shù)、頻率分布表:

組別

分組

頻數(shù)(人數(shù))

頻率

1

10≤t<30

0.16

2

30≤t<50

20

3

50≤t<70

0.28

4

70≤t<90

6

5

90≤t<110


(1)將表中空格處的數(shù)據(jù)補(bǔ)全,完成上面的頻數(shù)、頻率分布表;

(2)請(qǐng)?jiān)诮o出的平面直角坐標(biāo)系中畫出相應(yīng)的頻數(shù)直方圖;
(3)如果該校有1500名學(xué)生,請(qǐng)你估計(jì)該校共有多少名學(xué)生平均每天閱讀時(shí)間不少于50min?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校九年級(jí)有24個(gè)班,共1000名學(xué)生,他們參加了一次數(shù)學(xué)測(cè)試,學(xué)校統(tǒng)計(jì)了所有學(xué)生的成績,得到下列統(tǒng)計(jì)圖.

(1)求該校九年級(jí)學(xué)生本次數(shù)學(xué)測(cè)試成績的平均數(shù);
(2)下列關(guān)于本次數(shù)學(xué)測(cè)試說法正確的是( 。
A.九年級(jí)學(xué)生成績的眾數(shù)與平均數(shù)相等
B.九年級(jí)學(xué)生成績的中位數(shù)與平均數(shù)相等
C.隨機(jī)抽取一個(gè)班,該班學(xué)生成績的平均數(shù)等于九年級(jí)學(xué)生成績的平均數(shù)
D.隨機(jī)抽取300名學(xué)生,可以用他們成績的平均數(shù)估計(jì)九年級(jí)學(xué)生成績的平均數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8,點(diǎn)F在邊AC上,并且CF=2,點(diǎn)E為邊BC上的動(dòng)點(diǎn),將△CEF沿直線EF翻折,點(diǎn)C落在點(diǎn)P處,則點(diǎn)P到邊AB距離的最小值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,點(diǎn)O在邊AB上,以點(diǎn)O為圓心,OA為半徑的圓經(jīng)過點(diǎn)C,過點(diǎn)C作直線MN,使∠BCM=2∠A.

(1)判斷直線MN與⊙O的位置關(guān)系,并說明理由;
(2)若OA=4,∠BCM=60°,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方形OABC的OA邊在x軸的正半軸上,OC在y軸的正半軸上,拋物線y=ax2+bx經(jīng)過點(diǎn)B(1,4)和點(diǎn)E(3,0)兩點(diǎn).

(1)求拋物線的解析式;
(2)若點(diǎn)D在線段OC上,且BD⊥DE,BD=DE,求D點(diǎn)的坐標(biāo);
(3)在條件(2)下,在拋物線的對(duì)稱軸上找一點(diǎn)M,使得△BDM的周長為最小,并求△BDM周長的最小值及此時(shí)點(diǎn)M的坐標(biāo);
(4)在條件(2)下,從B點(diǎn)到E點(diǎn)這段拋物線的圖象上,是否存在一個(gè)點(diǎn)P,使得△PAD的面積最大?若存在,請(qǐng)求出△PAD面積的最大值及此時(shí)P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知P是線段AB的黃金分割點(diǎn),且PA>PB,若S1表示PA為一邊的正方形的面積,S2表示長是AB,寬是PB的矩形的面積,則S1S2 . (填“>”“=”或“<”)

查看答案和解析>>

同步練習(xí)冊(cè)答案