【題目】如圖,在RtABC中,∠ACB90°,ACBC,將△ABC繞點A逆時針旋轉(zhuǎn)60°,得到△ADE,連接BE,則∠BED的度數(shù)為_____

【答案】135°

【解析】

如圖,連接BD,由旋轉(zhuǎn)的性質(zhì)可得ABAD∠BAD60°,可證△ABD為等邊三角形,由“SSS”可證△ABE≌△DBE,可得∠ABE∠DBE30°,由三角形內(nèi)角和定理可求解.

解:如圖,連接BD

△ABC繞點A逆時針旋轉(zhuǎn)60°,得到△ADE,AC=AB

∴ABAD,∠BAD60°AE=DE,∠ADE45°

∴△ABD為等邊三角形,

∴∠ABD60°,ABBD

∵AEDE,BEBE

∴△ABE≌△DBESSS

∴∠ABE∠DBE30°

∴∠ABE∠DBE30°,

∵∠BDE∠ADB∠ADE15°,

∴∠BED135°

故答案為:135°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為提高飲水質(zhì)量,越來越多的居民開始選購家用凈水器.一商家抓住商機從廠家購進(jìn)了A、B兩種型號家用凈水器共160A型號家用凈水器進(jìn)價是150/,B型號家用凈水器進(jìn)價是350/,購進(jìn)兩種型號的家用凈水器共用去36000

1)求A、B兩種型號家用凈水器各購進(jìn)了多少臺;

2)為使每臺B型號家用凈水器的毛利潤是A型號的2且保證售完這160臺家用凈水器的毛利潤不低于11000,求每臺A型號家用凈水器的售價至少是多少元?(注毛利潤=售價﹣進(jìn)價)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=4AD=8,點EAD上一點,將△ABE沿BE折疊得到△FBE,點GCD上一點,將△DEG沿EG折疊得到△HEG,且EF、H三點共線,當(dāng)△CGH為直角三角形時,AE的長為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,DBC的中點,點GAD上(點G不與A重合),過點G的直線交ABE,交射線AC于點F,設(shè)AE=xABAF=yACx,y≠0).

1)如圖1,若△ABC為等邊三角形,點GD重合,∠BDE=30,求證:△AEF∽△DEA

2)如圖2,若點GD重合,求證:x+y=2xy;

3)如圖3,若AG=nGDx=,y=,直接寫出n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖為某景區(qū)五個景點A,BC,D,E的平面示意圖,BAC的正東方向,DC的正北方向,D,EB的北偏西30°方向上,EA的西北方向上,CD相距1000m,EBD的中點處.

(1)求景點B,E之間的距離;

(2)求景點B,A之間的距離.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某個體地攤經(jīng)銷一批小商品,每件商品的成本為8元.據(jù)市場分析,銷售單價定為10元時,每天能售出200件;現(xiàn)采用提高商品售價,減少銷售量的辦法增加利潤,若銷售單價每漲1元,每天的銷售量就減少20件,設(shè)銷售單價為每件x元,銷售量為y件.

1)寫出yx函數(shù)關(guān)系式.

2)若想每天的銷售利潤恰為640元,同時又要使顧客得到實惠,這種小商品每件售價應(yīng)定為多少元?

3)這種小商品每件售價應(yīng)定為多少元時,每天的銷售利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為阻斷新冠疫情向校園蔓延,確保師生生命安全和身體健康,教育部通知,2020年春季學(xué)期延期開學(xué),利用網(wǎng)上平臺,停課不停學(xué),某校對初三全體學(xué)生數(shù)學(xué)線上學(xué)習(xí)情況進(jìn)行調(diào)查,隨機抽取部分學(xué)生的4月月診斷性測試成績,按由高到低分為AB,C,D四個等級,根據(jù)調(diào)查的數(shù)據(jù)繪制成如下的條形統(tǒng)計圖和扇形統(tǒng)計圖,請根據(jù)圖中的信息,解答下列問題:

(1)該校共抽查了   名同學(xué)的數(shù)學(xué)測試成績,扇形統(tǒng)計圖中A等級所占的百分比a   ;

(2)補全條形統(tǒng)計圖;

(3)若該校初三共有1180名同學(xué),請估計該校初三學(xué)生數(shù)學(xué)測試成績優(yōu)秀(測試成績B級以上為優(yōu)秀,含B級)約有   名;

(4)該校老師想從兩男、兩女四位學(xué)生中隨機選擇兩位了解平時線上學(xué)習(xí)情況,請用列表或畫樹形圖的方法求出恰好選中一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面上有且只有4個點,這4個點中有一個獨特的性質(zhì):連結(jié)每兩點可得到6條線段,這6條線段有且只有兩種長度.我們把這四個點稱作準(zhǔn)等距點.例如正方形ABCD的四個頂點(如圖1),有AB=BC=CD=DAAC=BD.其實滿足這樣性質(zhì)的圖形有很多,如圖2AB、CO四個點,滿足AB=BC=CA,OA=OB=OC;如圖3AB、CO四個點,滿足OA=OB=OC=BC,AB=AC

1)如圖,若等腰梯形ABCD的四個頂點是準(zhǔn)等距點,且AD∥BC

寫出相等的線段(不再添加字母);

∠BCD的度數(shù).

2)請再畫出一個四邊形,使它的四個頂點為準(zhǔn)等距點,并寫出相等的線段.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD⊙O的內(nèi)接四邊形,BC⊙O的直徑,OE⊥BCAB于點E,若BE=2AE,則∠ADC =_________°

查看答案和解析>>

同步練習(xí)冊答案