【題目】若x1 , x2(x1<x2)是方程(x﹣a)(x﹣b)=1(a<b)的兩個根,則實數(shù)x1 , x2 , a,b的大小關(guān)系為( 。
A.x1<x2<a<b
B.x1<a<x2<b
C.x1<a<b<x2
D.a<x1<b<x2
【答案】C
【解析】解:用作圖法比較簡單,首先作出(x﹣a)(x﹣b)=0圖象,隨便畫一個(開口向上的,與x軸有兩個交點),再向下平移一個單位,就是(x﹣a)(x﹣b)=1,這時與x軸的交點就是x1 , x2 , 畫在同一坐標(biāo)系下,很容易發(fā)現(xiàn):
答案是:x1<a<b<x2 .
故選:C.
【考點精析】本題主要考查了拋物線與坐標(biāo)軸的交點的相關(guān)知識點,需要掌握一元二次方程的解是其對應(yīng)的二次函數(shù)的圖像與x軸的交點坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點.當(dāng)b2-4ac>0時,圖像與x軸有兩個交點;當(dāng)b2-4ac=0時,圖像與x軸有一個交點;當(dāng)b2-4ac<0時,圖像與x軸沒有交點.才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知|2a+b|與互為相反數(shù).
(1)求2a-3b的平方根;
(2)解關(guān)于x的方程ax2+4b-2=0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對某市8所學(xué)校抽取共1 000名學(xué)生進(jìn)行800米跑達(dá)標(biāo)抽樣檢測.結(jié)果顯示該市達(dá)標(biāo)學(xué)生人數(shù)超過半數(shù),達(dá)標(biāo)率達(dá)到52.5%.圖l、圖2反映的是本次抽樣中的具體數(shù)據(jù).
根據(jù)以上信息,下列判斷:①小學(xué)高年級被抽檢人數(shù)為200人;②小學(xué)、初中、高中學(xué)生中高中生800米跑達(dá)標(biāo)率最大;③小學(xué)生800米跑達(dá)標(biāo)率低于33%;④高中生800米跑達(dá)標(biāo)率超過70%.其中判斷正確的有( 。
A.0個
B.1個
C.2個
D.3個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,E為BC的中點,連接AE并延長交DC的延長線于點F.
(1)求證:AB=CF;
(2)當(dāng)BC與AF滿足什么數(shù)量關(guān)系時,四邊形ABFC是矩形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】”4.20蘆山地震”發(fā)生后,各地積極展開抗震救援工作,一支救援車隊經(jīng)過如圖1所示的一座拱橋,拱橋的輪廓是拋物線型,拱高6m,跨度20m,相鄰兩支柱間的距離均為5m,將拋物線放在所給的直角坐標(biāo)系中(如圖2所示),拱橋的拱頂在y軸上.
(1)求拱橋所在拋物線的解析式;
(2)求支柱MN的長度;
(3)拱橋下地平面是雙向行車道(正中間是一條寬2米的隔離帶),其中的一條行車道能否并排行駛寬2m、高2.4m的三輛汽車(隔離帶與內(nèi)側(cè)汽車的間隔、汽車間的間隔、外側(cè)汽車與拱橋的間隔均為0.5m)?請說說你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是屋架設(shè)計圖的一部分,點D是斜梁AB的中點,立柱BC、DE垂直于橫梁AC,AB=4m,∠A=30°,則DE等于( )
A. 1m B. 2m C. 3m D. 4m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中.
(1)把△ABC進(jìn)行平移,得到△A′B′C′,使點A與A′對應(yīng),請在網(wǎng)格中畫出△A′B′C′;
(2)線段AA′與線段CC′的位置關(guān)系是: ;(填“平行”或“相交”)
(3)求出△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個口袋中有1個黑球和若干個白球,這些球除顏色外其他都相同.已知從中任意摸取一個球,摸得黑球的概率為 .
(1)求口袋中白球的個數(shù);
(2)如果先隨機從口袋中摸出一球,不放回,然后再摸出一球,求兩次摸出的球都是白球的概率.用列表法或畫樹狀圖法加以說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AD=4,∠CAB=30°,點P是線段AC上的動點,點Q是線段CD上的動點,則AQ+QP的最小值是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com