【題目】如圖,已知反比例函數(shù)的圖象與一次函數(shù)的圖象在第一象限交于兩點,一次函數(shù)的圖象與軸交于點.
(1)求反比例函數(shù)和一次函數(shù)的表達式;
(2)當為何值時,?
(3)已知點,過點作軸的平行線,在第一象限內(nèi)交一次函數(shù)的圖象于點,交反比例函數(shù)的圖象于點.結(jié)合函數(shù)圖象直接寫出當時的取值范圍.
【答案】(1);(2)當時,;(3)
【解析】
(1)將(1,3)代入反比例函數(shù)關系式即可求得k1的值,進而可求得點B坐標,再將點A、B坐標分別代入一次函數(shù)關系式,聯(lián)立方程組即可求得k2和b的值,進而得解;
(2)由函數(shù)圖像可知的圖像在點C的左側(cè),求得點C坐標即可得解;
(3)根據(jù)PM>PN可知點M、N應該在點A、B之間,進而得解.
解:(1)∵反比例函數(shù)的圖象過點,
∴,
∴,
∴,
∵點在函數(shù)的圖象上,
∴,
∴,
∵一次函數(shù)的圖象過點,
∴,解得,
∴
∴反比例函數(shù)和一次函數(shù)的表達式分別為;
(2)∵當時,,
∴,
由圖象可知,當時,;
(3)如圖,由圖象可得,當時,點M、N應該在點A、B之間,
∴.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知一次函數(shù)y=x-2與反比例函數(shù)y=的圖象相交于點A(2, n) ,與x軸相交于點B.
(1)求k 的值以及點 B 的坐標;
(2)以AB為邊作菱形ABCD,使點C在x軸正半軸上,點D在第一象限,求點D的坐標;
(3)在y軸上是否存在點P,使PA+PB的值最小?若存在,請求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校為了創(chuàng)建書香校園,去年購買了一批圖書.其中科普書的單價比文學書的單價多8元,用1800元購買的科普書的數(shù)量與用l000元購買的文學書的數(shù)量相同.
(1)求去年購買的文學書和科普書的單價各是多少元;
(2)這所學校今年計劃再購買這兩種文學書和科普書共200本,且購買文學書和科普書的總費用不超過2088元.今年文學書的單價比去年提高了20%,科普書的單價與去年相同,且每購買1本科普書就免費贈送1本文學書,求這所學校今年至少要購買多少本科普書?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,的半徑為5,點A的坐標為(3,0),與x軸相交于點B,C,交y軸正半軸于點D.
(1)求點B,D的坐標;
(2)過點B作的切線,與過點A,C的拋物線交于點P.拋物線交y軸正半軸于點Q.若P的縱坐標為t,四邊形PQAC的面積為y.
①求y與t的函數(shù)關系式;
②若△PBO與△DOA相似,求取最小值時m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校計劃購進甲、乙兩種規(guī)格的書架,經(jīng)市場調(diào)查發(fā)現(xiàn)有線上和線下兩種購買方式,具體情況如下表:
規(guī)格 | 線下 | 線上 | ||
單價(元/個) | 運費(元/個) | 單價(元/個) | 運費(元/個) | |
甲 | 240 | 0 | 210 | 20 |
乙 | 300 | 0 | 250 | 30 |
(1)如果在線下購買甲、乙兩種書架共30個,花費8280元,求甲、乙兩種書架各購買了多少個?
(2)如果在線上購買甲、乙兩種書架共30個,且購買乙種書架的數(shù)量不少于甲種書架的3倍,請求出花費最少的購買方案及花費.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合與探究:
如圖1,拋物線與軸交于兩點(點在點的左側(cè)),頂點為,為對稱軸右側(cè)拋物線的一個動點,直線與軸于點,過點作,交軸于點.
(1)求直線的函數(shù)表達式及點的坐標;
(2)如圖2,當軸時,將以每秒1個單位長度的速度沿軸的正方向平移,當點與點重合時停止平移.設平移秒時,在平移過程中與四邊形重疊部分的面積為,求關于的函數(shù)關系式,并寫出自變量的取值范圍;
(3)如圖3,過點作軸的平行線,交直線于點,直線與交于點,設點的橫坐標為.
①當時,求的值;
②試探究點在運動過程中,是否存在值,使四邊形是菱形?若存在,請直接寫出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線與軸和軸分別交于點和點拋物線經(jīng)過點與直線的另一個交點為.
求的值和拋物線的解析式
點在拋物線上,軸交直線于點點在直線上,且四邊形為矩形.設點的橫坐標為矩形的周長為求與的函數(shù)關系式以及的最大值
將繞平面內(nèi)某點逆時針旋轉(zhuǎn)得到(點分別與點對應),若的兩個頂點恰好落在拋物線上,請直接寫出點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2019年10月10日傍晚18:10左右,江蘇省無錫市山區(qū)312國道上海方向K135處,錫港路上跨橋出現(xiàn)橋面?zhèn)确斐?/span>3人死亡,2人受傷,盡管該事故原因初步分析為半掛牽引車嚴重超載導致橋梁發(fā)生側(cè)翻,但是也引起了社會各界對橋梁設計安全性的擔憂,我市積極開展對橋梁結(jié)構(gòu)設計的安全性進行評估(已知:抗傾覆系數(shù)越高,安全性越強;當抗傾覆系數(shù)≥2.5時,認為該結(jié)構(gòu)安全),現(xiàn)在重慶市隨機抽取了甲、乙兩個設計院,對其各自在建的或已建的20座橋梁項目進行排查,將得到的抗傾覆數(shù)據(jù)進行整理、描述和分析(抗傾覆數(shù)據(jù)用x表示,共分成6組:A.0≤x<2.5,B.2.5≤x<5.0,C.5.0≤x<7.5,D.7.5≤x<10.0,E.10.0≤x<12.5,F.12.5≤x<15),下面給出了部分信息;
其中,甲設計院C組的抗傾覆系數(shù)是:7,7,7,6,7,7;
乙設計院D組的抗傾覆系數(shù)是:8,8,9,8,8,8;
甲、乙設計院分別被抽取的20座橋梁的抗傾覆系數(shù)統(tǒng)計表
設計院 | 甲 | 乙 |
平均數(shù) | 7.7 | 8.9 |
眾數(shù) | a | 8 |
中位數(shù) | 7 | b |
方差 | 19.7 | 18.3 |
根據(jù)以上信息解答下列問題:
(1)扇形統(tǒng)計圖中D組數(shù)據(jù)所對應的圓心角是 度,a= ,b= ;
(2)根據(jù)以上數(shù)據(jù),甲、乙兩個設計院中哪個設計院的橋梁安全性更高,說明理由(一條即可): ;
(3)據(jù)統(tǒng)計,2018年至2019年,甲設計院完成設計80座橋梁,乙設計院完成設計120座橋梁,請估算2018年至2019年兩設計院的不安全橋梁的總數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,、為河對岸的兩幢建筑物,某學習小組為了測出河寬(沿岸是平行的),先在岸邊的點處測得,再沿著河岸前進10米后到達點,在點處測得,.
(1)求河寬;
(2)該小組發(fā)現(xiàn)此時還可求得、之間的距離,請求出的長.(精確到0.1米)(參考數(shù)據(jù):,,,)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com