【題目】在四邊形中,是邊上一點,點從出發(fā)以秒的速度沿線段運動,同時點從出發(fā),沿線段、射線運動,當(dāng)運動到,兩點都停止運動.設(shè)運動時間為(秒):
(1)當(dāng)與的速度相同,且時,求證:
(2)當(dāng)與的速度不同,且分別在上運動時(如圖1),若與全等,求此時的速度和值;
(3)當(dāng)運動到上,運動到射線上(如圖2),若的速度為秒,是否存在恰當(dāng)?shù)倪?/span>的長,使在運動過程中某一時刻剛好與全等,若存在,請求出此時的值和邊的長;若不存在,請說明理由.
【答案】(1)見解析;(2)的速度為3,t的值為2;(3)的長為時,兩三角形全等
【解析】
(1)根據(jù)SAS即可證明△EBP≌△PCQ.
(2)正確尋找全等三角形的對應(yīng)邊,根據(jù)路程,速度,時間的關(guān)系即可解決問題.
(3)分兩種情形分別構(gòu)建方程組即可解決問題.
(1)由題意:BP=CQ=1×2=2(cm),
∵BC=8cm,BE=6cm,
∴PC=8-2=6(cm),
,,,,
(2)設(shè)的速度為,
則,
分兩種情況:
①當(dāng)時,,
即,解得,(舍去)
② 當(dāng)時,,
即,解得,
Q的速度為3,t的值為2.
(3)設(shè),則,
分兩種情況:
①當(dāng)時,,
即,解得,
②,
即,解得
故:當(dāng)的長為時,兩三角形全等.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠A=∠B,AE=BE,點D在AC邊上,∠1=∠2,AE和BD相交于點O.
(1)求證:△AEC≌△BED;
(2)若∠1=42°,求∠BDE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)操作發(fā)現(xiàn):如圖1,D是等邊三角形ABC邊BA上一動點(點D與點B不重合),連接DC,以DC為邊在BC上方作等邊三角形DCF,連接AF.你能發(fā)現(xiàn)線段AF與BD之間的數(shù)量關(guān)系嗎?并證明你發(fā)現(xiàn)的結(jié)論.
(2)類比猜想:如圖2,當(dāng)動點D運動到等邊三角形ABC邊BA的延長線上時,其他作法與(1)相同,猜想AF與BD在(1)中的結(jié)論是否仍然成立?如果成立,請證明;如果不成立,是否有新的結(jié)論?如果有新的結(jié)論,直接寫出新的結(jié)論,不需證明.
(3)深入探究:①如圖3,當(dāng)動點D在等邊三角形ABC的邊BA上運動時(點D與點B不重合),連接DC,以DC為邊在其上方、下方分別作等邊三角形DCF和等邊三角形DCF',連接AF,BF′.探究AF,BF′與AB有何數(shù)量關(guān)系?并證明你發(fā)現(xiàn)的結(jié)論。
②如圖4,當(dāng)動點D在等邊三角形ABC的邊BA的延長線上運動時,其他作法與圖3相同,①中的結(jié)論是否仍然成立?如果成立,請證明;如果不成立,是否有新的結(jié)論?如果有新的結(jié)論,直接寫出新的結(jié)論,不需證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】八年級(1)班學(xué)生在完成課題學(xué)習(xí)“體質(zhì)健康測試中的數(shù)據(jù)分析”后,利用課外活動時間積極參加體育鍛煉,每位同學(xué)從籃球、跳繩、立定跳遠、長跑、鉛球中選一項進行訓(xùn)練,訓(xùn)練后都進行了測試.現(xiàn)將項目選擇情況及訓(xùn)練后籃球定時定點投籃測試成績整理后作出如下統(tǒng)計圖.
請你根據(jù)上面提供的信息回答下列問題:
(1)扇形圖中跳繩部分的扇形圓心角為 度,該班共有學(xué)生 人, 訓(xùn)練后籃球定時定點投籃平均每個人的進球數(shù)是 .
(2)老師決定從選擇鉛球訓(xùn)練的3名男生和1名女生中任選兩名學(xué)生先進行測試,請用列表或畫樹形圖的方法求恰好選中兩名男生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】CD經(jīng)過∠BCA頂點C的一條直線,CA=CB.E,F(xiàn)分別是直線CD上兩點,且∠BEC=∠CFA=∠α.
(1)若直線CD經(jīng)過∠BCA的內(nèi)部,且E,F(xiàn)在射線CD上,請解決下面兩個問題:
①如圖1,若∠BCA=90°,∠α=90°,則BE_____CF;EF_____|BE﹣AF|(填“>”,“<”或“=”);
②如圖2,若0°<∠BCA<180°,請?zhí)砑右粋關(guān)于∠α與∠BCA關(guān)系的條件_____,使①中的兩個結(jié)論仍然成立。
(2)如圖3,若直線CD經(jīng)過∠BCA的外部,∠α=∠BCA,請?zhí)岢?/span>EF,BE,AF三條線段數(shù)量關(guān)系的合理猜想并給出理由。.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,是等邊三角形,是直線上一點,以為頂點做 . 交過且平行于的直線于,求證:;當(dāng)為的中點時,(如圖1)小明同學(xué)很快就證明了結(jié)論:他的做法是:取的中點,連結(jié),然后證明. 從而得到,我們繼續(xù)來研究:
(1)如圖2、當(dāng)D是BC上的任意一點時,求證:
(2)如圖3、當(dāng)D在BC的延長線上時,求證:
(3)當(dāng)在的延長線上時,請利用圖4畫出圖形,并說明上面的結(jié)論是否成立(不必證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】清明節(jié)假期的某天,小強騎車從家出發(fā)前往革命烈士陵園掃墓,勻速行駛一段時間后,因車子出現(xiàn)問題,途中耽擱了一段時間,車子修好后,以更快的速度勻速前行,到達烈士陵園掃完墓后勻速騎車回家.其中表示小強從家出發(fā)后的時間,表示小強離家的距離,下面能反映變量與之間關(guān)系的大致圖象是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商家到梧州市一茶廠購買茶葉,購買茶葉數(shù)量為x千克(x>0),總費用為y元,現(xiàn)有兩種購買方式.
方式一:若商家贊助廠家建設(shè)費11500元,則所購茶葉價格為130元/千克;(總費用=贊助廠家建設(shè)費+購買茶葉費)
方式二:總費用y(元)與購買茶葉數(shù)量x(千克)滿足下列關(guān)系式:y= .
請回答下面問題:
(1)寫出購買方式一的y與x的函數(shù)關(guān)系式;
(2)如果購買茶葉超過150千克,說明選擇哪種方式購買更省錢;
(3)甲商家采用方式一購買,乙商家采用方式二購買,兩商家共購買茶葉400千克,總費用共計74600元,求乙商家購買茶葉多少千克?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若二次函數(shù)和的圖象關(guān)于原點成中心對稱,我們就稱其中一個函數(shù)是另一個函數(shù)的中心對稱函數(shù),也稱函數(shù)和互為中心對稱函數(shù).
求函數(shù)的中心對稱函數(shù);
如圖,在平面直角坐標系xOy中,E,F(xiàn)兩點的坐標分別為,,二次函數(shù)的圖象經(jīng)過點E和原點O,頂點為已知函數(shù)和互為中心對稱函數(shù);
請在圖中作出二次函數(shù)的頂點作圖工具不限,并畫出函數(shù)的大致圖象;
當(dāng)四邊形EPFQ是矩形時,請求出a的值;
已知二次函數(shù)和互為中心對稱函數(shù),且的圖象經(jīng)過的頂點當(dāng)時,求代數(shù)式的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com